Skip to main content
Log in

A Polynomial Algorithm with Asymptotic Ratio \(\boldsymbol {2/3}\) for the Asymmetric Maximization Version of the \(\boldsymbol m \)-PSP

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

In 2005, Kaplan et al. presented a polynomial-time algorithm with guaranteed approximation ratio \(2/3\) for the maximization version of the asymmetric TSP. In 2014, Glebov, Skretneva, and Zambalaeva constructed a similar algorithm with approximation ratio \(2/3 \) and cubic runtime for the maximization version of the asymmetric \(2 \)-PSP (\(2 \)-APSP-max), where it is required to find two edge-disjoint Hamiltonian cycles of maximum total weight in a complete directed weighted graph. The goal of this paper is to construct a similar algorithm for the more general \(m \)-APSP-max in the asymmetric case and justify an approximation ratio for this algorithm that tends to \(2/3 \) as \(n\) grows and the runtime complexity estimate \(O(mn^3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

REFERENCES

  1. J. Krarup, “The Peripatetic Salesman and Some Related Unsolved Problems,” in Combinatorial Programming: Methods and Applications. Proceedings of NATO Advanced Study Institute (Versailles, France, 1974) (Reidel, Dordrecht, 1975), pp. 173–178.

  2. A. A. Ageev, A. E. Baburin, and E. Kh. Gimadi, “A \(3/4 \)-Approximation Algorithm for Finding Two Disjoint Hamiltonian Cycles of Maximum Weight,” Diskret. Anal. Issled. Oper. Ser. 1, 13 (2), 11–20 (2006) [J. Appl. Ind. Math. 1 (2), 142–147 (2007)].

    MathSciNet  Google Scholar 

  3. A. N. Glebov and D. Zh. Zambalaeva, “A Polynomial Algorithm with Approximation Ratio \(7/9\) for the Maximum Two Peripatetic Salesmen Problem,” Diskret. Anal. Issled. Oper. 18 (4), 17–48 (2011) [J. Appl. Ind. Math. 6 (1), 69–89 (2012)].

    MathSciNet  Google Scholar 

  4. A. E. Baburin, E. Kh. Gimadi, and N. M. Korkishko, “Approximation Algorithms for Finding Two Edge-Disjoint Hamiltonian Cycles of Minimal Total Weight,” Diskret. Anal. Issled. Oper. Ser. 2, 11 (1), 11–25 (2004).

    MATH  Google Scholar 

  5. A. A. Ageev and A. V. Pyatkin, “A \(2 \)-Approximation Algorithm for the Metric \(2 \)-Peripatetic Salesman Problem,” Diskret. Anal. Issled. Oper. 16 (4), 3–20 (2009).

    MathSciNet  MATH  Google Scholar 

  6. A. N. Glebov and A. V. Gordeeva, “An Algorithm with Approximation Ratio \(5/6 \) for the Metric Maximum \(m \)-PSP,” in Discrete Optimization and Operations Research. Proceedings of 9th International Conference DOOR-2016 (Vladivostok, Russia, September 19–23, 2016) (Heidelberg Springer, 2016), pp. 159–170.

  7. E. Kh. Gimadi, “Asymptotically Optimal Algorithm for Finding One and Two Edge-Disjoint Traveling Salesman Routes of Maximal Weight in Euclidean Space,” Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk 14 (2), 23–32 (2008) [Proc. Steklov Inst. Math. 263 (Suppl. 2), S57–S67 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  8. A. E. Baburin and E. Kh. Gimadi, “On the Asymptotic Optimality of an Algorithm for Solving the Maximum \(m\)-PSP in a Multidimensional Euclidean Space,” Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk16 (3), 12–24 (2010) [Proc. Steklov Inst. Math. 272 (Suppl. 1), S1–S13 (2011)].

    MathSciNet  MATH  Google Scholar 

  9. E. Kh. Gimadi, Yu. V. Glazkov, and A. N. Glebov, “Approximation Algorithms for Solving the \(2\)-Peripatetic Salesman Problem on a Complete Graph with Edge Weights \(1 \) and \(2 \),” Diskret. Anal. Issled. Oper. Ser. 2, 14 (2), 41–61 (2007) [J. Appl. Ind. Math. 3 (1), 46–60 (2009)].

    MathSciNet  MATH  Google Scholar 

  10. A. N. Glebov, A. V. Gordeeva, and D. Zh. Zambalaeva, “An Algorithm with Approximation Ratio \(7/5\) for the Minimum \(2 \)-Peripatetic Salesmen Problem with Different Weight Functions,” Sibir. Electron. Mat. Izv. 8, 296–309 (2011).

    MATH  Google Scholar 

  11. A. N. Glebov and D. Zh. Zambalaeva, “An Approximation Algorithm for the Minimum \(2 \)-Peripatetic Salesmen Problem with Different Weight Functions,” Diskret. Anal. Issled. Oper. 18 (5), 11–37 (2011) [J. Appl. Ind. Math. 6 (2), 167–183 (2012)].

    MathSciNet  Google Scholar 

  12. E. Kh. Gimadi and E. V. Ivonina, “Approximation Algorithms for the Maximum \(2 \)-Peripatetic Salesman Problem,” Diskret. Anal. Issled. Oper. Ser. 2, 19 (1), 17–32 (2012) [J. Appl. Ind. Math. 6 (3), 295–305 (2012)].

    MathSciNet  MATH  Google Scholar 

  13. A. V. Gordeeva, Polynomial Algorithms with Guaranteed Approximation Ratios for a Metric Maximum Two Traveling Salesman Problem, Kvalif. Specialist Thesis (Novosib. Gos. Univ., Novosibirsk, 2010) [in Russian].

  14. R. Wolfter Calvo and R. Cordone, “A Heuristic Approach to the Overnight Security Service Problem,” Comput. Oper. Res. 30, 1269–1287 (2003).

    Article  MATH  Google Scholar 

  15. J. B. J. M. De Kort, “A Branch and Bound Algorithm for Symmetric \(2 \)-Peripatetic Salesman Problems,” European J. Oper. Res. 70 (2), 229–243 (1993).

    MATH  Google Scholar 

  16. J. B. J. M. De Kort, “Lower Bounds for Symmetric \(K \)-Peripatetic Salesman Problems,” Optimization22 (1), 113–122 (1991).

    MathSciNet  MATH  Google Scholar 

  17. J. B. J. M. De Kort, “Upper Bounds for the Symmetric 2-Peripatetic Salesman Problem,” Optimization 23 (4), 357–367 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. J. D. De Brey and A. Volgenant, “Well-Solved Cases of the \(2 \)-Peripatetic Salesman Problem,” Optimization39 (3), 275–293 (1997).

    MathSciNet  MATH  Google Scholar 

  19. The Traveling Salesman Problem and Its Variations, Ed. by G. Gutin and A. P. Punnen (Kluwer Acad. Publ., Dordrecht, 2002).

  20. E. Kh. Gimadi, “Approximation Efficient Algorithms with Performance Guarantees for some Hard Routing Problems," in Proceedings of II International Conference “Optimization and Applications” OPTIMA-2011 (Petrovac, Montenegro, September 25–October 2, 2011) (Vych. Tsentr Ross. Akad. Nauk, Moscow, 2011), pp. 98–101.

  21. H. Kaplan, M. Lewenstein, N Shafrir, and M. Sviridenko, “Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs,” J. ACM52 (4), 602–626 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. I. Serdyukov, “An Algorithm with an Estimate for a Salesman Problem for Maximum,” in Proceedings of the Institute of Mathematics: Controlled Systems, Vol. 25 (Inst. Mat., Novosibirsk, 1984), pp. 80–86.

  23. R. Hassin and S. Rubinstein, “Better Approximations for Max TSP,” Inform. Process. Lett. 75 (4), 181–186 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Paluch, M. Mucha, and A. Madry, “A \(7/9 \)-Approximation Algorithm for the Maximum Traveling Salesman Problem,” in Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques: Proceedings of 12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems-APPROX 2009 (UC Berkeley, USA, August 21–23, 2009) (Springer, Heidelberg, 2009), pp. 298–311.

  25. S. Dudycz, J. Marcinkowski, K. Paluch, and B. A. Rybicki, “ \(4/5 \)-Approximation Algorithm for the Maximum Traveling Salesman Problem,” in Integer Programming and Combinatorial Optimization (Proceedings of 19th International Conference IPCO-2017, Waterloo, ON, Canada, June 26–28, 2017) (Springer, Cham, 2017), pp. 173–185.

  26. A. N. Glebov, D. Zh. Zambalaeva, and A. A. Skretneva, “A \(2/3 \)-Approximation Algorithm for the Maximum Asymmetric \(2 \)-Peripatetic Salesmen Problem,” Diskret. Anal. Issled. Oper. 21 (6), 11–20 (2014).

    MATH  Google Scholar 

  27. A. N. Glebov and S. G. Toktohoeva, “A Polynomial 3/5-Approximate Algorithm for the Asymmetric Maximization Version of the 3-PSP,” Diskret. Anal. Issled. Oper.26 (2), 30–59 (2019) [J. Appl. Ind. Math. 13 (2), 219–238 (2019)].

    Article  MathSciNet  Google Scholar 

  28. H. N. Gabow, “An Efficient Reduction Technique for Degree-Restricted Subgraph and Bidirected Network Flow Problems,” in Proceedings of 15th Annual ACM Symposium on Theory of Computing (Boston, USA, April 25–27, 1983) (ACM, New York, 1983), pp. 448–456.

  29. R Cole, K. Ost, and S. Schirra, “Edge-Coloring Bipartite Multigraphs in \(O(E\times \log D)\) Time,” Combinatorica 21 (1), 5–12 (2001).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors were supported by the Russian Foundation for Basic Research (projects nos. 18–01–00353 and 18–01–00747).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Glebov or S. G. Toktokhoeva.

Additional information

Translated by Ya.A. Kopylov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebov, A.N., Toktokhoeva, S.G. A Polynomial Algorithm with Asymptotic Ratio \(\boldsymbol {2/3}\) for the Asymmetric Maximization Version of the \(\boldsymbol m \)-PSP. J. Appl. Ind. Math. 14, 456–469 (2020). https://doi.org/10.1134/S1990478920030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478920030059

Keywords

Navigation