Skip to main content
Log in

NP-Completeness of the Independent Dominating Set Problem in the Class of Cubic Planar Bipartite Graphs

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

It is known that the independent dominating set problem is NP-complete both in the class of cubic planar graphs and in the class of cubic bipartite graphs. Still open is the question about the computational complexity of the problem in the intersection of these graph classes. In this article, we prove that the independent dominating set problem is NP-complete in the class of cubic planar bipartite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. O. Ore, Theory of Graphs (Amer. Math. Soc., Providence, RI, 1962).

    Book  Google Scholar 

  2. E. J. Cockayne and S. T. Hedetniemi, “Independence Graphs,” Congr. Numerantium. X, 471–491 (1974).

    MathSciNet  MATH  Google Scholar 

  3. E. Sampathkumar and H. B. Walikar, “The Connected Domination Number of a Graph,” J. Math. Phys. Sci. 13, 607–613 (1979).

    MathSciNet  MATH  Google Scholar 

  4. E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, “Total Domination in Graphs,” Networks 10, 211–219 (1980).

    Article  MathSciNet  Google Scholar 

  5. B. Bollobas and E. J. Cockayne, “Graph-Theoretic Parameters Concerning Domination, Independence, and Irredundance,” J. Graph Theory 3 (3), 241–249 (1979).

    Article  MathSciNet  Google Scholar 

  6. E. J. Cockayne, B. L. Hartnell, S. T. Hedetniemi, and R. Laskar, “Perfect Domination in Graphs,” J. Combin. Inform. Syst. Sci. 18, 136–148 (1993).

    MathSciNet  MATH  Google Scholar 

  7. E. Sampathkumar and P. S. Neeralagi, “The Neighborhood Number of a Graph,” Indian J. Pure Appl. Math. 16, 126–132 (1985).

    MathSciNet  MATH  Google Scholar 

  8. E. Sampathkumar and P. S. Neeralagi, “Independent, Perfect and Connected Neighborhood Numbers of a Graph,” J. Combin. Inform. Syst. Sci. 19, 139–145 (1994).

    MATH  Google Scholar 

  9. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

    MATH  Google Scholar 

  10. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

    MATH  Google Scholar 

  11. D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and Applications (Springer, New York, 2013).

    Book  Google Scholar 

  12. W. Goddard and M. A. Henning, “Independent Domination in Graphs: A Survey and Recent Results,” Discrete Math. 313, 839–854 (2013).

    Article  MathSciNet  Google Scholar 

  13. M. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013).

    Book  Google Scholar 

  14. C.-H. Liu, S.-H. Poon, and J.-Y. Lin, “Independent Dominating Set Problem Revisited,” Theoret. Comput. Sci. 562, 1–22 (2015).

    Article  MathSciNet  Google Scholar 

  15. C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

    MATH  Google Scholar 

  16. J. Topp, “Domination, Independence and Irredundance in Graphs,” inDissertationes Mathematicae, Vol. 342 (Warszawa, 1995).

  17. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    MATH  Google Scholar 

  18. D. F. Manlove, “On the Algorithmic Complexity of Twelve Covering and Independence Parameters of Graphs,” Discrete Appl. Math. 91, 155–175 (1999).

    Article  MathSciNet  Google Scholar 

  19. V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, and R. I. Tyshkevich,Lectures on Graph Theory (Nauka, Moscow, 1990; B. I. Wissenschaftsverlag, Mannheim, 1994).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their deep gratitude to the referee whose remarks and advice contributed to the improvement of the article.

Funding

The authors were supported by the Belarusian Republican Foundation for Fundamental Research (project no. F20UKA–005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. A. Loverov or Yu. L. Orlovich.

Additional information

Translated by Ya.A. Kopylov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loverov, Y.A., Orlovich, Y.L. NP-Completeness of the Independent Dominating Set Problem in the Class of Cubic Planar Bipartite Graphs. J. Appl. Ind. Math. 14, 353–368 (2020). https://doi.org/10.1134/S1990478920020131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478920020131

Keywords

Navigation