Skip to main content
Log in

The Exact Formula for the Exponents of the Mixing Digraphs of Register Transformations

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

A digraph is primitive if some positive degree of it is a complete digraph, i.e. has all possible arcs. The smallest degree of this kind is called the exponent of the digraph. Given a primitive digraph, the elementary local exponent for some vertices \(u\) and \(v \) is the least positive integer \(\gamma \) such that there exists a path from \(u \) to \(v\) of any length not less than \(\gamma \). For the transformation on the binary \(n \)-dimensional vector space which is given by a set of \(n \) coordinate functions, there corresponds some \(n \) vertex digraph such that a pair \((u,v) \) is an arc if the \(v \)th coordinate component of the transformation depends essentially on the \(u\)th variable. Such a digraph we call a mixing digraph of the transformation. Under study are the mixing digraphs of \(n\)-bit shift registers with a nonlinear Boolean feedback function (NFSR), \(n>1 \), which are widely used in cryptography. We find the exact formulas for the exponent and elementary local exponents of the \(n \)-vertex primitive mixing digraph associated to an NFSR. The above results can be applied to evaluating the length of the blank run of the pseudo-random sequences generators based on NFSRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. G. Frobenius, “Über Matrizen aus nicht negativen Elementen,” Berl. Ber. 456–477 (1912) [in German].

  2. A. L. Dulmage and N. S. Mendelsohn, “The Exponent of a Primitive Matrix,” Canad. Math. Bull. 5 (3), 241–244 (1962).

    Article  MathSciNet  Google Scholar 

  3. V. M. Fomichev, Ya. E. Avezova, A. M. Koreneva, and S. N. Kyazhin, “Primitivity and Local Primitivity of Digraphs and Nonnegative Matrices,” Diskretn. Anal. Issled. Oper. 25 (3), 95–125 (2018) [J. Appl. Indust. Math.12 (3), 453–469 (2018)].

    Article  Google Scholar 

  4. V. M. Fomichev, Methods of Discrete Mathematics in Cryptology (Dialog-MIFI, Moscow, 2010) [in Russian].

    Google Scholar 

  5. V. Yu. Protasov, “Semigroups of Nonnegative Matrices,” Uspekhi Mat. Nauk65 (6), 191–192 (2010) [Russian Math. Surveys 65 (6), 1186–1188 (2010)].

    Article  MathSciNet  Google Scholar 

  6. V. Yu. Protasov and A. S. Voynov, “Sets of Nonnegative Matrices Without Positive Products,” Linear Algebra Appl. 437 (3), 749–765 (2012).

    Article  MathSciNet  Google Scholar 

  7. A. S. Voynov, “Shortest Positive Products of Nonnegative Matrices,” Linear Algebra Appl. 439 (6), 1627–1634 (2013).

    Article  MathSciNet  Google Scholar 

  8. R. A. Brualdi and B. Liu, “Generalized Exponents of Primitive Directed Graphs,” J. Graph Theory 14 (4), 483–499 (1990).

    Article  MathSciNet  Google Scholar 

  9. B. Liu, “Generalized Exponents of Boolean Matrices,” Linear Algebra Appl.373, 169–182 (2003).

    Article  MathSciNet  Google Scholar 

  10. V. M. Fomichev and S. N. Kyazhin, “Local Primitivity of Matrices and Graphs,” Diskretn. Anal. Issled. Oper. 24 (1), 97–119 (2017) [J. Appl. Indust. Math. 11 (1), 26–39 (2017)].

    Article  MathSciNet  Google Scholar 

  11. H. Wielandt, “Unzerlegbare, nicht negative Matrizen,” Math. Z. 52, 642–648 (1950).

    Article  MathSciNet  Google Scholar 

  12. P. Perkins, “A Theorem on Regular Graphs,” Pacific J. Math. 2, 1529–1533 (1961).

    Article  Google Scholar 

  13. A. L. Dulmage and N. S. Mendelsohn, “Gaps in the Exponent Set of Primitive Matrices,” Illinois J. Math. 8 (4), 642–656 (1964).

    Article  MathSciNet  Google Scholar 

  14. S. W. Neufeld, “A Diameter Bound on the Exponent of a Primitive Directed Graph,” Linear Algebra Appl. 245, 27–47 (1996).

    Article  MathSciNet  Google Scholar 

  15. A. V. Knyazev, “Estimations of the Extreme Values of the Principal Metric Characteristics of Pseudosymmetrical Graphs,” Doctorate Dissertation in Fiz.-Mat. Nauk (Vychisl. Tsentr RAN, Moscow, 2002).

  16. V. M. Fomichev, “The New Universal Estimation of Exponents of Graphs,” Prikl. Diskretn. Mat. No. 3 (33), 78–84 (2016).

  17. V. M. Fomichev, “On Improved Universal Estimation of Exponents of Digraphs,” Prikl. Diskretn. Mat. No. 43, 115–123 (2019).

  18. S. W. Golomb, “Shift Register Sequences—A Retrospective Account,” in Sequences and Their Applications(Proceedings of 4th International Conference SETA–2006, Beijing, China, September 24–28, 2006) (Heidelberg, Springer, 2012), pp. 1–4.

  19. M. Goresky and A. Klapper, Algebraic Shift Register Sequences (Cambridge University Press, Cambridge, 2012).

    MATH  Google Scholar 

  20. V. I. Solodovnikov, Shift Registers and Cryptographic Algorithms Based on Them (Lambert Acad. Publ., 2017) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Fomichev or Ya. E. Avezova.

Additional information

Translated by G.A. Chumakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomichev, V.M., Avezova, Y.E. The Exact Formula for the Exponents of the Mixing Digraphs of Register Transformations. J. Appl. Ind. Math. 14, 308–320 (2020). https://doi.org/10.1134/S199047892002009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047892002009X

Keywords

Navigation