Skip to main content
Log in

Mathematical and Numerical Models of the Central Regulatory Circuit of the Morphogenesis System of Drosophila

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The results are presented of mathematical and computer simulation of the functioning of the central regulatory circuit (CRC) which is the system integrator of the gene networks of morphogenesis of Drosophila mechanoreceptors. The main element of the CRC is represented by the complex of Achaete-Scute (AS-C) genes, the main genes of the mechanoreceptor morphogenesis. The content level of the proteins encoded by the AS-C genes is a determining factor for initiating the development of a mechanoreceptor. We carried out a comparative study of the CRC behavior under normal conditions and in the presence of mutational changes in the Achaete-Scute complex. The results of simulation are in good accord with the available biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. A. Bukharina and D. P. Furman, “Genetic Control of Mechanoreceptors Formation in Drosophila melanogaster—The Description in Database ‘NEUROGENESIS’,” Inform. Vestn. VOGiS 13 (1), 186–193 (2009).

    Google Scholar 

  2. D. P. Furman and T. A. Bukharina, “Prepattern Gene Network Controlling the First Stage of the Bristle Pattern Development in Drosophila melanogaster,” Vavilov. Zh. Genetiki i Selektsii 20 (6), 832–839 (2016).

    Google Scholar 

  3. D. P. Furman and T. A. Bukharina, “The Gene Network Determining Development of Drosophila melanogaster Mechanoreceptors,” Comput. Biol. Chem. 33, 231–234 (2009).

    Article  Google Scholar 

  4. A. S. Serebrovskii and N. P. Dubinin, “Artificial Production of Mutations and Gene Problem,” Uspekhi Eksperim. Biol. 4, 235–247 (1929).

    Google Scholar 

  5. I. J. Agol, “Step Allelomorphism in Drosophila melanogaster,” Genetics 16 (3), 254–66 (1931).

    Google Scholar 

  6. N. P. Dubinin, “Step-Allelomorphism in Drosophila melanogaster. The Allelomorphs achaete2-scute10, achaete1-scute11, and achaete3-scute13,” J. Genetics 25 (2), 163–181 (1932).

    Article  Google Scholar 

  7. A. García-Bellido and J. F. de Celis, “The Complex Tale of the Achaete-Scute Complex: A Paradigmatic Case in the Analysis of Gene Organization and Function During Development,” Genetics 182 (3), 631–639 (2009).

    Article  Google Scholar 

  8. J. Modolell and S. Campuzano, “The Achaete-Scute Complex as an Integrating Device,” Internat. J. Develop. Biol. 42 (3), 275–282 (1998).

    Google Scholar 

  9. P. J. Chang, Y. L. Hsiao, A. C. Tien, Y. C. Li, and H. Pi, “Negative-Feedback Regulation of Proneural Proteins Controls the Timing of Neural Precursor Division,” Development135 (18), 3021–3030 (2008).

    Article  Google Scholar 

  10. H. Pi, S. K. Huang, C. Y. Tang, Y. H. Sun, and C. T. Chien, “Phyllopod is a Target Gene of Proneural Proteins in Drosophila External Sensory Organ Development,” Proc. Nat. Acad. Sci. U.S.A. 101 (22), 8378–8383 (2004).

    Article  Google Scholar 

  11. V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, and S. I. Fadeev, “Theory of Gene Networks,” in Systemic Computer Biology, Ed. by N. A. Kolchanov, S. S. Goncharov, V. A. Likhoshvai, and V. A. Ivanisenko (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2008), Chapter 5, pp. 399–482.

  12. T. A. Bukharina, D. P. Furman, and V. P. Golubyatnikov, “A Model Study of the Morphogenesis of D. melanogaster Mechanoreceptors: The Central Regulatory Circuit,” J. Bioinformatics and Comput. Biol.13 (01), 1540006-1–1540006-15 (2015).

    Google Scholar 

  13. L. Wilkinson, The Grammar of Graphics (Springer, New York, 2005).

    MATH  Google Scholar 

  14. M. V. Kazantsev, “Software for Modeling Early Stages of Some Biological Processes,” Vestnik NGU. Ser. Vychisl. Tekhnol. 14 (3), 25–33 (2016).

    Google Scholar 

  15. A. A. Akin’shin, V. P. Golubyatnikov, and M. V. Kazantsev, “Comparative Analysis of Some Numerical Methods for Modeling the Gene Networks with Application of Language \(R \),” in Selected Papers of International Conference “Lomonosov Readings in Altai: Fundamental Problems of Science and Education” (Izd. Altai. Gos Univ., Barnaul, 2014), pp. 548–554.

  16. K. Soetaert, T. Petzoldt, and R. W. Setzer, “Solving Differential Equations in R: Package deSolve,” J. Statist. Software 33 (9), 1–25 (2010).

    Article  Google Scholar 

  17. A. C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers,” in Scientific Computing (Amsterdam, 1983), pp. 55–64.

  18. N. Reeves and J. W. Posakony, “Genetic Programs Activated by Proneural Proteins in the Developing Drosophila PNS,” Developmental Cell 8, 413–425 (2005).

    Article  Google Scholar 

  19. A. Ghysen and R. Thomas, “The Formation of Sense Organs in Drosophila: A Logical Approach,” BioEssays 25, 802–807 (2003).

    Article  Google Scholar 

  20. M. Roark, M. F. Sturtevant, J. Emery, H. Vaessin, E. Grell, and E. Bier, “Scratch, a Pan-Neural Gene Encoding a Zinc Finger Protein Related to Snail, Promotes Neuronal Development,” Genes & Development 9, 2384–2398 (1995).

    Article  Google Scholar 

  21. H. Jafar-Nejad, M. Acar, R. Nolo, H. Lacin, H. Pan, S. M. Parkhurst, and H. J. Bellen, “Senseless Acts as a Binary Switch During Sensory Organ Precursor Selection,” Genes & Development 17, 2966–2978 (2003).

    Article  Google Scholar 

  22. L. M. Escuderol, E. Caminero, K. L. Schulze, H. J. Bellen, and J. Modolell, “Charlatan, a Zn-Finger Transcription Factor, Establishes a Novel Level of Regulation of the Proneural achaete/scute Genes of Drosophila,” Development 132, 1211–1222 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to the referee whose criticisms contributed to a significant improvement of the text of the article.

Funding

The authors were supported by the Complex Program of Basic Research of the Siberian Branch of the Russian Academy of Sciences (projects nos. 0324–2018–0021 and 0314–2018–0011) and the Russian Foundation for Basic Research (project no. 18–01–00057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Bukharina, A. A. Akinshin, V. P. Golubyatnikov or D. P. Furman.

Additional information

Translated by L.B. Vertgeim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukharina, T.A., Akinshin, A.A., Golubyatnikov, V.P. et al. Mathematical and Numerical Models of the Central Regulatory Circuit of the Morphogenesis System of Drosophila. J. Appl. Ind. Math. 14, 249–255 (2020). https://doi.org/10.1134/S1990478920020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478920020040

Keywords

Navigation