Skip to main content
Log in

Abstract

Boolean functions in general and Boolean polynomials (Zhegalkin polynomials or algebraic normal forms (ANF)) in particular are the subject of theoretical and applied studies in various fields of computer science. This article addresses the linear operators of the space of Boolean polynomials in n variables, which leads to the results on the problem of finding the minimum annihilator degree for a given Boolean polynomial. This problem is topical in various analytical and algorithmic aspects of cryptography. Boolean polynomials and their combinatorial properties are under study in discrete analysis. The theoretical foundations of information security include the study of the properties of Boolean polynomials in connection with cryptography. In this article, we prove a theorem on the minimum annihilator degree. The class of Boolean polynomials is described for which the degree of an annihilator is at most 1. We give a few combinatorial characteristics related to the properties of the space of Boolean polynomials. Some estimates of the minimum degree of an annihilator are given. We also consider the case of symmetric polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. I. A. Pankratova, Boolean Functions in Cryptography: TextBook (Tomsk. Gos. Univ., Tomsk, 2014) [in Russian].

    Google Scholar 

  2. N. Courtois and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear Feedback,” in Advances in Cryptology—EUROCRYPT 2003 (Proceedings of International Conference on Theory and Applications of Cryptography Techniques, Warsaw, Poland, May 4–8, 2003) (Springer, Heidelberg, 2003), pp. 345–359.

    Google Scholar 

  3. F. Didier, “A New Upper Bound of the Block Error Probability after Decoding over the Erasure Channel,” IEEE Trans. Inform. Theory. 52 (10), 4496–4503 (2006).

    Article  MathSciNet  Google Scholar 

  4. K. Feng, Q. Liao, and J. Yang, “Maximal Values of Generalized Algebraic Immunity,” Des. Codes Cryptogr. 50, 243–252 (2009).

    Article  MathSciNet  Google Scholar 

  5. C. Carlet and B. Merabet, “Asymptotic Lower Bound on the Algebraic Immunity of Random Balanced Multi-Output Boolean Functions,” Adv. Math. Commun. 7 (2), 197–217 (2013).

    Article  MathSciNet  Google Scholar 

  6. M. S. Lobanov, “Exact Ratios Between Nonlinearity and Algebraic Immunity,” Diskret. Anal. Issled. Oper. 15 (6), 34–47 (2008).

    MATH  Google Scholar 

  7. M. S. Lobanov, “About a Method for Obtaining Some Lower Estimates of Nonlinearity of a Boolean Function,” Mat. Zametki 93 (5), 741–745 (2013).

    Article  Google Scholar 

  8. M. S. Lobanov, “An Exact Ratio Between Nonlinearity and Algebraic Immunity,” Diskret. Mat. 18 (3), 152–159 (2006).

    Article  Google Scholar 

  9. V. K. Leont’ev, “Boolean Polynomials and Linear Transformations,” Dokl. Ross. Akad. Nauk 425 (3), 320–322 (2009).

    MathSciNet  MATH  Google Scholar 

  10. M. E. Tuzhilin, “Algebraic Immunity of Boolean Functions,” Prikl. Diskret. Mat. No. 2, 18–22 (2008).

  11. P. Rizomiliotis, “Improving the High Order Nonlinearity of Boolean Functions with Prescribed Algebraic Immunity,” Discrete Appl. Math. 158 (18), 2049–2055 (2010).

    Article  MathSciNet  Google Scholar 

  12. S. Mesnager, “Improving the Lower Bound on the Higher Order Nonlinearity of Boolean Functions with Prescribed Algebraic Immunity,” IEEE Trans. Inform. Theory 54 (8), 3656–3662 (2008).

    Article  MathSciNet  Google Scholar 

  13. S. Mesnager and G. Gohen, “Fast Algebraic Immunity of Boolean Functions,” Adv. Math. Commun. 11 (2), 373–377 (2017).

    Article  MathSciNet  Google Scholar 

  14. Q. Wang and T. Johansson, “On Equivalence Classes of Boolean Functions,” in Information Security and Cryptology (Revised Selected Papers. 13th International Conference, Seoul, Korea, December 1–3, 2010). (Springer, Heidelberg, 2011), pp. 311–324.

    Google Scholar 

  15. J. Peng and H. Kan, “Constructing Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity on an Odd Number of Variables,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E95-A (6), 1056–1064 (2012).

    Article  Google Scholar 

  16. L. Sun and F.-W. Fu, “Constructions of Balanced Odd-Variable Rotation Symmetric Boolean Functions with Optimal Algebraic Immunity and High Nonlinearity,” Theor. Comput. Sci. 738, 13–24 (2018).

    Article  MathSciNet  Google Scholar 

  17. L. Sun and F.-W. Fu, “Constructions of Even-Variable RSBFs with Optimal Algebraic Immunity and High Nonlinearity,” J. Appl. Math. Comput. 56 (1–2), 593–610 (2018).

    Article  MathSciNet  Google Scholar 

  18. F. U. Shaojing, D. U. Jiao, Q. U. Longjiang, and L. I. Chao, “Construction of Odd-Variable Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E99-A (4), 853–855 (2016).

    Article  Google Scholar 

  19. Q. Wang, C. H. Tan, and P. Stănică, “Concatenations of the Hidden Weighted Bit Function and Their Cryptographic Properties,” Adv. Math. Commun. 8 (2), 153–165 (2014).

    Article  MathSciNet  Google Scholar 

  20. V. K. Leont’ev, “Symmetrical Boolean Polynomials,” Zh. Vychisl. Mat. Mat. Fiz. 50 (8), 1520–1531 (2010).

    MathSciNet  MATH  Google Scholar 

  21. C. Carlet, G. Gao, and W. Liu, “A Secondary Construction and a Transformation on Rotation Symmetric Functions, and Their Action on Bent and Semi-Bent Functions,” J. Combin. Theory A, 127, 161–175 (2014).

    Article  MathSciNet  Google Scholar 

  22. S. Su and X. Tang, “Construction of Rotation Symmetric Boolean Functions with Optimal Algebraic Immunity and High Nonlinearity,” Des. Codes Cryptogr. 71, 1567–1580 (2014).

    Article  MathSciNet  Google Scholar 

  23. V. K. Leont’ev, Combinatorics and Information, Vol. 1: Combinatorial Analysis (MFTI, Moscow, 2015) [in Russian].

    Google Scholar 

  24. V. K. Leontev and O. Moreno, “About Zeros of Boolean Polynomials,” Zh. Vychisl. Mat. Mat. Fiz. 38 (9), 1608–1615 (1998).

    MathSciNet  Google Scholar 

  25. V. K. Leontev and E. N. Gordeev, “On Number of Zeros of Boolean Polynomials,” Zh. Vychisl. Mat. Mat. Fiz. 68 (7), 1235–1245 (2018).

    Google Scholar 

  26. E. N. Gordeev, V. K. Leontev, and N. V. Medvedev, “On Properties of Boolean Polynomials Important for Cryptosystems,” Voprocy Kiberbezopasnosti No. 3, 63–69 (2017).

Download references

Funding

The authors were supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment 0063-2016-0003) and the Russian Foundation for Basic Research (project no. 17-01-00300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. K. Leont’ev or E. N. Gordeev.

Additional information

Russian Text © The Author(s), 2020, published in Diskretnyi Analiz i Issledovanie Operatsii, 2020, Vol. 27, No. 1, pp. 88–109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leont’ev, V.K., Gordeev, E.N. On the Annihilators of Boolean Polynomials. J. Appl. Ind. Math. 14, 162–175 (2020). https://doi.org/10.1134/S1990478920010159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478920010159

Keywords

Navigation