Skip to main content
Log in

Minimization of Even Conic Functions on the Two-Dimensional Integral Lattice

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under consideration is the Successive Minima Problem for the 2-dimensional lattice with respect to the order given by some conic function f. We propose an algorithm with complexity of 3.32 log2R + O(1) calls to the comparison oracle of f, where R is the radius of the circular searching area, while the best known lower oracle complexity bound is 3 log2R + O(1). Wegivean efficient criterion for checking that given vectors of a 2-dimensional lattice are successive minima and form a basis for the lattice. Moreover, we show that the similar Successive Minima Problem for dimension n can be solved by an algorithm with at most O(n)2n log R calls to the comparison oracle. The results of the article can be applied to searching successive minima with respect to arbitrary convex functions defined by the comparison oracle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. Yu. Chirkov, “Minimization of a Quasiconvex Function on 2-Dimensional Lattice,” Vestnik of Lobachevsky State University of Nizhny Novgorod, Ser. Modeling and Optimal Control 1, 227–238 (2003).

    Google Scholar 

  2. A. Ahmadi, A. Olshevsky, P. Parrilo, and J. Tsitsiklis, “NP-Hardness of Deciding Convexity of Quadratic Polynomials and Related Problems,” Math. Program. 137 (1–2), 453–476 (2013).

    Article  MathSciNet  Google Scholar 

  3. D. Dadush, Integer Programming, Lattice Algorithms, and Deterministic Volume Estimation, Ph. D. Thesis (ProQuest LLC, Ann Arbor, MI; Georgia Institute of Technology, 2012).

    Google Scholar 

  4. D. Dadush, C. Peikert, and S. Vempala, “Enumerative Lattice Algorithms in Any Norm via M-Ellipsoid Coverings,” in Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (Palm Springs, California, October 23–25, 2011), pp. 580–589.

    Google Scholar 

  5. L. Khachiyan and L. Porkolab, “Integer Optimization on Convex Semialgebraic Sets,” Discrete and Comput. Geom. 23 (2), 207–224 (2000).

    Article  MathSciNet  Google Scholar 

  6. H. Lenstra, “Integer Programming with a Fixed Number of Variables,” Math. Oper. Res. 8 (4), 538–548 (1983).

    Article  MathSciNet  Google Scholar 

  7. J. A. de Loera, R. Hemmecke, M. Koppe, and R. Weismantel, “Integer Polynomial Optimization in Fixed Dimension,” Math. Oper. Res. 31 (1), 147–153 (2006).

    Article  MathSciNet  Google Scholar 

  8. S. Heinz, “Complexity of Integer Quasiconvex Polynomial Optimization,” J. Complexity 21 (4), 543–556 (2005).

    Article  MathSciNet  Google Scholar 

  9. S. Heinz, “Quasiconvex Functions Can Be Approximated by Quasiconvex Polynomials,” ESAIM Control Optim. Calc. Var. 14 (4), 795–801 (2008).

    Article  MathSciNet  Google Scholar 

  10. R. Hemmecke, S. Onn, and R. Weismantel, “A Polynomial Oracle-Time Algorithm for Convex Integer Minimization,” Math. Program. 126 (1), 97–117 (2011).

    Article  MathSciNet  Google Scholar 

  11. R. Hildebrand and M. Köppe, “A New Lenstra-Type Algorithm for Quasiconvex Polynomial Integer Minimization with Complexity 2O(n log n),” Discrete Optim. 10 (1), 69–84 (2013).

    Article  MathSciNet  Google Scholar 

  12. T. Oertel, Integer Convex Minimization in Low Dimensions, Thes. Doct. Phylosophy (Eidgenössische Technische Hochschule, Zürich, 2014).

    Google Scholar 

  13. T. Oertel, C. Wagner, and R. Weismantel, “Integer Convex Minimization by Mixed Integer Linear Optimization,” Oper. Res. Lett. 42 (6), 424–428 (2014).

    Article  MathSciNet  Google Scholar 

  14. A. Basu and T. Oertel, “Centerpoints: A Link Between Optimization and Convex Geometry,” SIAM J. Optim. 27 (2), 866–889 (2017).

    Article  MathSciNet  Google Scholar 

  15. A. Yu. Chirkov, D. V. Gribanov, D. S. Malyshev, P. M. Pardalos, S. I. Veselov, and A. Yu. Zolotykh, “On the Complexity of Quasiconvex Integer Minimization Problem,” J. Global Optim. 73 (4), 761–788 (2018).

    Article  MathSciNet  Google Scholar 

  16. S. I. Veselov, D. V. Gribanov, N. Yu. Zolotykh, and A. Yu. Chirkov, “Minimizing a Symmetric Quasiconvex Function on a Two-Dimensional Lattice,” Discret. Anal. Issled. Oper. 25 (3), 23–35 (2018)

    MathSciNet  MATH  Google Scholar 

  17. S. I. Veselov, D. V. Gribanov, N. Yu. Zolotykh, and A. Yu. Chirkov, J. Appl. Indust. Math. 12 (3), 587–594 (2018)].

    Article  Google Scholar 

  18. D. Micciancio, “Efficient Reductions Among Lattice Problems,” in Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, California, January 20–22, 2008), pp. 84–93.

    Google Scholar 

  19. D. Micciancio and P. Voulgaris, “A Deterministic Single Exponential Time Algorithm for Most Lattice Problems Based on Voronoi Cell Computations,” SIAM J. Comput. 42 (3), 1364–1391 (2010).

    Article  MathSciNet  Google Scholar 

  20. D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz, “Solving the Shortest Vector Problem in 2n Time via Discrete Gaussian Sampling,” in STOC’15. Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing (Portland, Oregon, USA, June 14–17, 2015), pp. 733–742.

  21. D. Aggarwal, D. Dadush, and N. Stephens-Davidowitz, “Solving the Closest Vector Problem in 2n Time—The Discrete Gaussian Strikes Again!” in IEEE 56th Annual Symposium on Foundations of Computer Science (Berkeley, California, October 18–20, 2015), pp. 563–582.

  22. R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics—A Foundation for Computer Science, 2nd ed. (Addison-Wesley Prof., Reading, MA, USA, 1994).

    MATH  Google Scholar 

  23. J. Cassels, An Introduction to the Geometry of Numbers (Springer, Berlin, 1997).

    MATH  Google Scholar 

  24. J. Edmonds, “Systems of Distinct Representatives and Linear Algebra,” J. Res. National Bureau of Stand. B: Math. Math. Phys. 71 B (4), 241–245 (1967).

    Article  MathSciNet  Google Scholar 

  25. M. Grötschel, L. Lovász, and A. Schrijver, “Geometric Algorithms and Combinatorial Optimization,” in Algorithms and Combinatorics, Vol. 2, 2nd corr. ed. (Springer, Berlin, 1993).

Download references

Acknowledgments

The authors are especially grateful to S. I. Veselov, N. Yu. Zolotykh, and A. Yu. Chirkov for their invaluable help in the preparation of the manuscript.

Funding

The authors were supported by the Russian Foundation for Basic Research (project no. 18-31-2001-mol-a-ved).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Gribanov or D. S. Malyshev.

Additional information

Russian Text © The Author(s), 2020, published in Diskretnyi Analiz i Issledovanie Operatsii, 2020, Vol. 27, No. 1, pp. 17–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribanov, D.V., Malyshev, D.S. Minimization of Even Conic Functions on the Two-Dimensional Integral Lattice. J. Appl. Ind. Math. 14, 56–72 (2020). https://doi.org/10.1134/S199047892001007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047892001007X

Keywords

Navigation