Skip to main content
Log in

On a Relation Between the Depth and Complexity of Monotone Boolean Formulas

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We present a sequence of monotone Boolean functions whose depth over the basis {∧, ∨} is c > 1.06 times greater than the logarithm of the formula complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. V. Yablonskii and V. P. Kozyrev, “Mathematical Problems of Cybernetics,” in Information Materials of Scientific Council of Academy of Sciences USSR on Complex Problem “Cybernetics”, Vol. 19a (Akad. Nauk USSR, Moscow, 1968), pp. 3–15.

    Google Scholar 

  2. R. P. Brent, D. J. Kuck, and K. Maruyama, “The Parallel Evaluation of Arithmetic Expressions Without Division,” IEEE Trans. Comp. C-22, 532–534 (1973).

    Article  MathSciNet  Google Scholar 

  3. R. P. Brent, “The Parallel Evaluation of General Arithmetic Expressions in Logarithmic Time,” J. ACM 21 (2), 201–206 (1974).

    Article  Google Scholar 

  4. A. B. Ugol’nikov, “Depth and Polynomial Equivalence of Formulas for Closed Classes of Two-Valued Logic,” Matem. Zametki 42 (4), 603–612 (1987) [Math. Notes 42 (4), 832-837 (1987)].

    MathSciNet  MATH  Google Scholar 

  5. M. Ragaz, “Parallelizable Algebras,” Arch.Math. Logic 26, 77–99 (1986/87).

    Article  MathSciNet  Google Scholar 

  6. R. F. Safin, “On a Relation Between the Depth and the Complexity in Precomplete Classes of k-Valued Logic,” in Mathematical Problems of Cybernetics, Vol. 13 (Fizmatlit, Moscow, 2004), pp. 223–278.

    MathSciNet  MATH  Google Scholar 

  7. P. B. Tarasov, Conditions for the Uniformity of Systems of Multivalued Logic Functions, Candidate’s Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2016).

    Google Scholar 

  8. V. M. Khrapchenko, “On a Relation Between the Complexity and the Depth of Formulas in the Basis Containing Median” in Methods of Discrete Analysis in Studying Boolean Functions and Graphs, Vol. 37 (Izd. Inst. Mat., Novosibirsk, 1981), pp. 77–84.

    MathSciNet  MATH  Google Scholar 

  9. V. M. Khrapchenko, “On a Relation Between the Complexity and the Depth of Formulas,” in Methods of Discrete Analysis in Synthesis of Control Systems, Vol. 32 (Izd. Inst. Mat., Novosibirsk, 1978), pp. 76–94.

    MathSciNet  MATH  Google Scholar 

  10. S. R. Kosaraju, “Parallel Evaluation of Division-Free Arithmetic Expressions,” in Proceedings of 18th ACM Symposium on Theory of Computing (ACM, New York, 1986), pp. 231–239.

    Google Scholar 

  11. E. Shamir and M. Snir, “On the Depth Complexity of Formulas,” Math. Syst. Theory 13 (4), 301-322 (1979/80).

    Article  MathSciNet  Google Scholar 

  12. D. Coppersmith and B. Schieber, “Lower Bounds on the Depth of Monotone Arithmetic Computations,” in Proceedings of the 33rd Symposium on Foundations of Computer Science (IEEE CS, Washington, 1992), pp. 288–295.

    MATH  Google Scholar 

  13. V. M. Khrapchenko, “Asymptotic Estimate of Addition Time of a Parallel Adder,” in Problems of Cybernetics, Vol. 19 (Nauka, Moscow, 1967), pp. 107–120 [Systems Theory Res. 19, 105-122 (1970)].

    Google Scholar 

  14. B. Commentz-Walter, “Size-Depth Tradeoff in Monotone Boolean Formulae,” Acta Inform. 12, 227–243 (1979).

    Article  MathSciNet  Google Scholar 

  15. M. I. Grinchuk, “Sharpening an Upper Bound on the Adder and Comparator Depths,” Diskret. Anal. Issled. Oper. Ser. 1, 15 (2), 12–22 (2008) [J. Appl. Indust. Math. 3 (1), 61-67 (2009)].

    MathSciNet  MATH  Google Scholar 

  16. B. Commentz-Walter and J. Sattler, “Size-Depth Tradeoff in Nonmonotone Boolean Formulae,” Acta Inform. 14, 257–269 (1980).

    Article  MathSciNet  Google Scholar 

  17. P. M. Spira, “On Time-Hardware Complexity Tradeoffs for Boolean Functions, in Proceedings of 4th Hawaii Symposium on System Science (Western Periodical Company, N. Hollywood, 1971), pp. 525–527.

    Google Scholar 

  18. F. P. Preparata and D. E. Muller, “The Time Required to Evaluate Division-Free Arithmetic Expressions,” Inform. Proc. Letters 3 (5), 144–146 (1975).

    Article  MathSciNet  Google Scholar 

  19. A. Barak and E. Shamir, “On the Parallel Evaluation of Boolean Expressions,” SIAM J. Comput. 5 (4), 678–681 (1976).

    Article  MathSciNet  Google Scholar 

  20. D. E. Muller and F. P. Preparata, “Restructuring of Arithmetic Expressions for Parallel Evaluation,” J. ACM 23 (3), 534–543 (1976).

    Article  MathSciNet  Google Scholar 

  21. F. P. Preparata and D. E. Muller, “Efficient Parallel Evaluation of Boolean Expressions,” IEEE Trans. Comp. C-25 (5), 548–549 (1976).

    Article  MathSciNet  Google Scholar 

  22. W. F. McColl, Some Results on Circuit Depth. Theory of Computation (Report no. 18, Univ. of Warwick, Coventry, 1977).

    Google Scholar 

  23. F. P. Preparata, D. E. Muller, and A. B. Barak, “Reduction of Depth of Boolean Networks With a Fan-In Constraint,” IEEE Trans. Comp. C-26 (5), 474–479 (1977).

    Article  MathSciNet  Google Scholar 

  24. S. V. Yablonskii, Introduction to Discrete Mathematics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

Download references

Acknowledgment

The author is grateful to the referee for a careful reading of the article and a number of remarks and suggestions that substantially improved the quality of exposition.

Funding

The author was supported by the Russian Foundation for Basic Research (project no. 19-01-00294-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Sergeev.

Additional information

Dedicated to the memory of ValeriiMikhailovich Khrapchenko

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 4, pp. 108–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, I.S. On a Relation Between the Depth and Complexity of Monotone Boolean Formulas. J. Appl. Ind. Math. 13, 746–752 (2019). https://doi.org/10.1134/S1990478919040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919040161

Keywords

Navigation