Abstract
We prove that, for n equal to 3, 5, and a power of 2, every minimal partition of the edge set of the n-dimensional cube is perfect. As a consequence, we obtain some description of the classes of all minimal parallel-serial contact schemes (π-schemes) realizing the linear Boolean functions that depend essentially on n variables for the corresponding values of n.
References
V. M. Khrapchenko, “Complexity of the Realization of a Linear Function in the Class of II-Circuits,” Mat. Zametki 9(1), 35–40 (1971) [Math. Notes Acad. Sci. USSR 9 (1), 21–23 (1971)].
V. M. Khrapchenko, “A Method of Determining Lower Bounds for the Complexity of II-Schemes,” Mat. Zametki 10 (1), 83–92 (1971) [Math. Notes Acad. Sci. USSR 10 (1), 474-479 (1971)].
V. M. Khrapchenko, “A Simplified Proof of a Lower Complexity Estimate,” Discrete Math. 25 (2), 82–84 (2013) [Discrete Math, and Appl. 23(2), 171–174 (2013)].
K. L. Rychkov, “A Modification of Khrapchenko’s Method and Its Application to Estimation of Complexity of 7π-Schemes for Code Functions,” in Methods of Discrete Analysis in Theory of Graphs and Schemes, Vol. 42 (Izd. Inst. Mat., Novosibirsk, 1985), pp. 91–98.
A. Razborov, “Applications of Matrix Methods to the Theory of Lower Bounds in Computational Complexity,” Combinatorica 10 (1), 81–93 (1990).
M. Karchmer and A. Wigderson, “Monotone Circuits for Connectivity Require Super-Logarithmic Depth,” SIAM J. Discrete Math. 3 (2), 255–265 (1990).
J. Hastad, “The Shrinkage Exponent is 2,” SIAM J. Comput. 27 (1), 48–64 (1998).
D. Yu. Cherukhin, “To the Question of a Logical Representation for the Parity Counter,” Neform. Nauka No. 2, 14–23 (2009).
S. V. Avgustinovich, Yu. L. Vasil’ev, and K. L. Rychkov, “The Computation Complexity in the Class of Formulas,” Diskretn. Anal. Issled. Open 19(3), 3–12 (2012) [J. Appl. Indust. Math. 6 (4), 403–409 (2012)].
Yu. L. Vasil’ev and K. L. Rychkov, “A Lower Bound on Formula Size of a Ternary Linear Function,” Diskretn. Anal. Issled. Open 20 (4), 15–26 (2013) [J. Appl. Indust. Math. 7 (4), 490–499 (2013)].
K. L. Rychkov, “On Minimal π-Schemes for Linear Boolean Functions,” in Methods of Discrete Analysis in Synthesis of Schemes for Boolean Functions, Vol. 51 (Izd. Inst. Mat., Novosibirsk, 1991), pp. 84–104 [Siberian. Adv. Math. 3(3), 172–185(1993)].
S. V. Yablonskii, “Realization of a Linear Function in the Class of 7π-Circuits,” Dokl. Akad. Nauk SSSR, Nov. Ser. 94 (5), 805–806 (1954).
K. L. Rychkov, “Sufficient Conditions for the Minimal π-Schemes for Linear Boolean Functions to be Locally Nonrepeating,” Diskretn. Anal. Issled. Open 22 (5), 71–85 (2015) [J. Appl. Indust. Math. 9 (4), 580–587 (2015)].
K. L. Rychkov, “Complexity of the Realization of a Linear Boolean Function in the Class of π-Schemes,” Diskretn. Anal. Issled. Open 25 (3), 36–94 (2018) [J. Appl. Indust. Math. 12 (3), 540–576(2018)].
F. Harary, Graph Theory (Addison-Wesley, London, 1969).
P. Turán, “Eine Extremalaufgabe aus der Graphentheorie,” Mat. Fiz. Lapok 48 (1), 436–452 (1941) [in Hungarian].
Funding
The author was supported by Program no. 1.1.I of Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2019-0001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 4, pp. 63–96.
Rights and permissions
About this article
Cite this article
Rychkov, K.L. On the Perfectness of Minimal Regular Partitions of the Edge Set of the n-Dimensional Cube. J. Appl. Ind. Math. 13, 717–739 (2019). https://doi.org/10.1134/S1990478919040148
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478919040148