Skip to main content
Log in

On the Perfectness of Minimal Regular Partitions of the Edge Set of the n-Dimensional Cube

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We prove that, for n equal to 3, 5, and a power of 2, every minimal partition of the edge set of the n-dimensional cube is perfect. As a consequence, we obtain some description of the classes of all minimal parallel-serial contact schemes (π-schemes) realizing the linear Boolean functions that depend essentially on n variables for the corresponding values of n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. M. Khrapchenko, “Complexity of the Realization of a Linear Function in the Class of II-Circuits,” Mat. Zametki 9(1), 35–40 (1971) [Math. Notes Acad. Sci. USSR 9 (1), 21–23 (1971)].

    MathSciNet  MATH  Google Scholar 

  2. V. M. Khrapchenko, “A Method of Determining Lower Bounds for the Complexity of II-Schemes,” Mat. Zametki 10 (1), 83–92 (1971) [Math. Notes Acad. Sci. USSR 10 (1), 474-479 (1971)].

    MathSciNet  MATH  Google Scholar 

  3. V. M. Khrapchenko, “A Simplified Proof of a Lower Complexity Estimate,” Discrete Math. 25 (2), 82–84 (2013) [Discrete Math, and Appl. 23(2), 171–174 (2013)].

    MathSciNet  MATH  Google Scholar 

  4. K. L. Rychkov, “A Modification of Khrapchenko’s Method and Its Application to Estimation of Complexity of 7π-Schemes for Code Functions,” in Methods of Discrete Analysis in Theory of Graphs and Schemes, Vol. 42 (Izd. Inst. Mat., Novosibirsk, 1985), pp. 91–98.

    MATH  Google Scholar 

  5. A. Razborov, “Applications of Matrix Methods to the Theory of Lower Bounds in Computational Complexity,” Combinatorica 10 (1), 81–93 (1990).

    Article  MathSciNet  Google Scholar 

  6. M. Karchmer and A. Wigderson, “Monotone Circuits for Connectivity Require Super-Logarithmic Depth,” SIAM J. Discrete Math. 3 (2), 255–265 (1990).

    Article  MathSciNet  Google Scholar 

  7. J. Hastad, “The Shrinkage Exponent is 2,” SIAM J. Comput. 27 (1), 48–64 (1998).

    Article  MathSciNet  Google Scholar 

  8. D. Yu. Cherukhin, “To the Question of a Logical Representation for the Parity Counter,” Neform. Nauka No. 2, 14–23 (2009).

    Google Scholar 

  9. S. V. Avgustinovich, Yu. L. Vasil’ev, and K. L. Rychkov, “The Computation Complexity in the Class of Formulas,” Diskretn. Anal. Issled. Open 19(3), 3–12 (2012) [J. Appl. Indust. Math. 6 (4), 403–409 (2012)].

    MATH  Google Scholar 

  10. Yu. L. Vasil’ev and K. L. Rychkov, “A Lower Bound on Formula Size of a Ternary Linear Function,” Diskretn. Anal. Issled. Open 20 (4), 15–26 (2013) [J. Appl. Indust. Math. 7 (4), 490–499 (2013)].

    MATH  Google Scholar 

  11. K. L. Rychkov, “On Minimal π-Schemes for Linear Boolean Functions,” in Methods of Discrete Analysis in Synthesis of Schemes for Boolean Functions, Vol. 51 (Izd. Inst. Mat., Novosibirsk, 1991), pp. 84–104 [Siberian. Adv. Math. 3(3), 172–185(1993)].

    MathSciNet  MATH  Google Scholar 

  12. S. V. Yablonskii, “Realization of a Linear Function in the Class of 7π-Circuits,” Dokl. Akad. Nauk SSSR, Nov. Ser. 94 (5), 805–806 (1954).

    MATH  Google Scholar 

  13. K. L. Rychkov, “Sufficient Conditions for the Minimal π-Schemes for Linear Boolean Functions to be Locally Nonrepeating,” Diskretn. Anal. Issled. Open 22 (5), 71–85 (2015) [J. Appl. Indust. Math. 9 (4), 580–587 (2015)].

    Google Scholar 

  14. K. L. Rychkov, “Complexity of the Realization of a Linear Boolean Function in the Class of π-Schemes,” Diskretn. Anal. Issled. Open 25 (3), 36–94 (2018) [J. Appl. Indust. Math. 12 (3), 540–576(2018)].

    MathSciNet  MATH  Google Scholar 

  15. F. Harary, Graph Theory (Addison-Wesley, London, 1969).

    Book  Google Scholar 

  16. P. Turán, “Eine Extremalaufgabe aus der Graphentheorie,” Mat. Fiz. Lapok 48 (1), 436–452 (1941) [in Hungarian].

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The author was supported by Program no. 1.1.I of Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2019-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Rychkov.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 4, pp. 63–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rychkov, K.L. On the Perfectness of Minimal Regular Partitions of the Edge Set of the n-Dimensional Cube. J. Appl. Ind. Math. 13, 717–739 (2019). https://doi.org/10.1134/S1990478919040148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919040148

Keywords

Navigation