Skip to main content
Log in

Abstract

We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. A. Markov, “On Transformations Without Error Propagation,” in Selected Works, Vol. II: Theory of Algorithms and Constructive Mathematics. Mathematical Logic. Information Science and Related Topics (MCCME, Moscow, 2003), pp. 70–93.

    Google Scholar 

  2. E. Bar-Yahalom and T. Etzion, “Intersection of Isomorphic Linear Codes,” J. Combin. Theory Ser. A 80 (1), 247–256 (1997).

    Article  MathSciNet  Google Scholar 

  3. T. Etzion and A. Vardy, “Perfect Binary Codes and Tilings: Problems and Solutions,” SIAM J. Discrete Math. 11 (2), 205–223 (1998).

    Article  MathSciNet  Google Scholar 

  4. V. N. Potapov, “Cardinality Spectra of Components of Correlation-Immune Functions, Bent Functions, Perfect Colorings, and Codes,” Problemy Peredachi Informatsii 48 (1), 54–63 (2012) [Probl. Inform. Transmission 48 (1), 47-55 (2012)].

    MathSciNet  MATH  Google Scholar 

  5. S. V. Avgustinovich, F. I. Solov’eva, and O. Heden, “Partitions of an n-Cube into Nonequivalent Perfect Codes,” Problemy Peredachi Informatsii 43 (4), 45–50 (2007) [Probl. Inform. Transmission 43 (4), 310-315 (2007)].

    MathSciNet  MATH  Google Scholar 

  6. A. V. Los’ and F I. Solov’eva, “On Partitions of the Space FNq into Affine Nonequivalent Perfect q-Ary Codes,” Sibir. Elektron. Mat. Izv. 7, 425–434 (2010).

    MATH  Google Scholar 

  7. F J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1977; Svyaz’, Moscow, 1979).

    MATH  Google Scholar 

  8. S. Frisch, “On the Minimal Distance Between Group Tables,” Acta Sci. Math. (Szeged) 63, 341–351 (1997).

    MathSciNet  MATH  Google Scholar 

  9. D. S. Krotov, V. N. Potapov, and P. V. Sokolova, “On Reconstructing Reducible n-Ary Quasigroups and Switching Subquasigroups,” Quasigr. Relat. Syst. 16, 55–67 (2008).

    MathSciNet  MATH  Google Scholar 

  10. V. N. Potapov and D. S. Krotov, “Asymptotics for the Number of n-Quasigroups of Order 4,” Sibir. Mat. Zh. 47 (4), 873–887 (2006) [Siberian Math. J. 47 (4), 720-731 (2006)].

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to D. S. Krotov and V. N. Potapov for the fruitful discussions on the topic of the present article.

Funding

The authors were supported by the Russian Foundation for Basic Research (project no. 19-01-00682) and the Program No. I.5.1 of Fundamental Scientific Research of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2019-0016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Avgustinovich or E. V. Gorkunov.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 4, pp. 5-15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avgustinovich, S.V., Gorkunov, E.V. Maximum Intersection of Linear Codes and Codes Equivalent to Linear. J. Appl. Ind. Math. 13, 600–605 (2019). https://doi.org/10.1134/S1990478919040021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919040021

Keywords

Navigation