Skip to main content
Log in

Abstract

A numerical study is carried out of the branch and cut method adapted for solving the clique partitioning problem (CPP). The problem is to find a family of pairwise disjoint cliques with minimum total weight in a complete edge-weighted graph. The two particular cases of the CPP are considered: The first is known as the aggregating binary relations problem (ABRP), and the second is the graph approximation problem (GAP). For the previously known class of facet inequalities of the polytope of the problem, the cutting-plane algorithm is developed. This algorithm includes the two new basic elements: finding a solution with given guaranteed accuracy and a local search procedure to solve the problem of inequality identification. The proposed cutting-plane algorithm is used to construct lower bounds in the branch and cut method. Some special heuristics are used to search upper bounds for the exact solution. We perform a numerical experiment on randomly generated graphs. Our method makes it possible to find an optimal solution for the previously studied cases of the ABRP and for new problems of large dimension. The GAP turns out to be a more complicated case of the CPP in the computational aspect. Moreover, some simple and difficult classes of the GAPs are identified for our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Y. Wakabayashi, Aggregation of Binary Relations: Algorithmic and Polyhedral Investigations, Master Thesis (Universitä t Augsburg, West Germany, 1986).

    MATH  Google Scholar 

  2. J. Brimberg, S. Janicijevic, S. Mladenovic, and D. Urosevic, “Solving the Clique Partitioning Problem as a Maximally Diverse Grouping Problem,” Optim. Lett. 11, 1123–1135 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. J. Brusco and H. F. Kohn, “Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem,” Psychometrika 74, 685–703 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Marcotorchino and P. Michaud, “Heuristic Approach to the Similarity Aggregation Problem,” Methods Oper. Res. 43, 395–404 (1981).

    MATH  Google Scholar 

  5. I. Ham, K. Hitomi, and T. Yoshida, Group Technology: Applications to Production Management (Kluwer Acad. Publ., Dordrecht, 1988).

    Google Scholar 

  6. M. Oosten, J. H. G. C. Rutten and F. C. R. Spieksma, “The Clique Partitioning Problem: Facets and Patching Facets,” J. Networks 38 (4), 209–226 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Fortunato, “Community Detection in Graphs,” Phys. Rep. 486 (3), 75–174 (2010).

    Article  MathSciNet  Google Scholar 

  8. S. Bocker, S. Briesemeister, and G. W. Klau, “Exact Algorithms for Cluster Editing: Evaluation and Experiments,” Algorithmica 60, 316–334 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Grotschel and Y. Wakabayashi, “A Cutting Plane Algorithm for a Clustering Problem,” Math. Program. Ser. B 45, 59–96 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Grotschel and Y. Wakabayashi, “Facets of the Clique Partitioning Polytope,” Math. Program. 47, 367–387 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Grotschel and Y. Wakabayashi, “Composition of Facets of the Clique Partitioning Polytope,” in Topics in Combinatorics and Graph Theory, Ed. by R. Bodendiek and R. Henn (Physica-Verlag, Heidelberg, 1990), pp. 271–284.

    Chapter  Google Scholar 

  12. R. Yu. Simanchev and I. V. Urazova, “On the Faces of the Graph Approximation Problem Polytope,” Diskretn. Anal. Issled. Oper. 22 (2), 86–101 (2015) [J. Appl. Industr. Math. 9 (2), 283–291 (2015)].

    MATH  Google Scholar 

  13. R. Yu. Simanchev and I. V. Urazova, “Separation Problem for k-Parashutes,” in Proceedings of DOOR 2016, Vladivostok, Russia, September 19–23, 2016, Vol. 1623 (Vladivostok, 2016), pp. 109–114. Available at http://ceur-ws.org/Vol-1623/paperco16.pdf.

    Google Scholar 

  14. F. Harary, “On the Notion of Balance of a Signed Graph,” Michigan Math. J. 2, 143–146 (1955).

    MathSciNet  MATH  Google Scholar 

  15. G. Sh. Fridman, “A Graph Approximation Problem,” Upravlyaemye Sistemy 8, 73–75 (1971).

    Google Scholar 

  16. C. T. Zahn, “Approximating Symmetric Relations by Equivalence Relations,” J. Soc. Indust. Appl. Math. 12 (4), 840–847 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Krivanek and J. Moravek, “NP-Hard Problems in Hierarchical-Tree Clustering,” Acta Inform. 23, 311–323 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Bansal, A. Blum, and S. Chawla, “Correlation Clustering,” Machine Learning 56, 89–113 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Ben-Dor, R. Shamir, and Z. Yakhimi, “Clustering Gene Expression Patterns,” J. Comput. Biol. 6 (3–4), 281–297 (1999).

    Article  Google Scholar 

  20. R. Shamir, R. Sharan, and D. Tsur, “Cluster Graph Modification Problems,” Discrete Appl. Math. 44 (1–2), 173–182 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. A. Ageev, V. P. Il’ev, A. V. Kononov, and A. S. Talevnin, “Computational Complexity of the Graph Approximation Problem,” Diskretn. Anal. Issled. Oper. 13 (1), 3–11 (2006) [J. Appl. Industr. Math. 1(1), 1–8 (2007)].

    MathSciNet  MATH  Google Scholar 

  22. M. Charikar, V. Guruswami, and A. Wirth, “Clustering with Qualitative Information,” J. Comput. Syst. Sci. 71 (3), 360–383 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Giotis and V. Guruswami, “Correlation Clustering with a Fixed Number of Clusters,” Theory of Computing 2(1), 249–266 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Ailon, M. Charikar, and A. Newman, “Aggregating Inconsistent Information: Ranking and Clustering,” J. ACM 55 (5), 1–27 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Van Zuylen and D. P. Williamson, “Deterministic Pivoting Algorithms for Constrained Ranking and Clustering Problems,” Math. Oper. Res. 34 (3), 594–620 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Yu. Simanchev and I. V. Urazova, “Scheduling Unit-Time Jobs on the Parallel Processors Polytope,” Diskretn. Anal. Issled. Oper. 18(11), 85–97 (2011).

    MathSciNet  MATH  Google Scholar 

  27. M. W Padbergand G. Rinaldi, “Facet Identification for the Symmetric Traveling Salesman Polytope,” Math. Programming 47, 219–257 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  28. R. M. Karp and C. H. Papadimitriu, “On Linear Characterizations of Combinatorial Optimization Problems,” SIAM J. Comput. 11, 620–632 (1982).

    Article  MathSciNet  Google Scholar 

  29. E. Alekseeva, Yu. Kochetov, and A. Plyasunov, “Complexity of Local Search for the p-Median Problem,” European J. Oper. Res. 191, 736–752 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Iellamo, E. Alekseeva, L. Chen, M. Coupechoux, and Yu. Kochetov, “Competitive Location in Cognitive Radio Networks,” 4OR 13 (1), 81–110 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Mladenovic, J. Brimberg, P. Hansen, and J. A. Moreno-Perez, “The p-Median Problem: A Survey of Metaheuristic Approaches,” European J. Oper. Res. 179 (3), 927–939 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  32. Z. Diakova and Yu. Kochetov, “A Double VNS Heuristic for the Facility Location and Pricing Problem,” Electronic Notes in Discrete Math. 39, 29–34 (2012).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors were supported by the Russian Foundation for Basic Research (project no. 18–07–00599).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Yu. Simanchev, I. V. Urazova or Yu. A. Kochetov.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 3, pp. 60–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simanchev, R.Y., Urazova, I.V. & Kochetov, Y.A. The Branch and Cut Method for the Clique Partitioning Problem. J. Appl. Ind. Math. 13, 539–556 (2019). https://doi.org/10.1134/S1990478919030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919030153

Keywords

Navigation