Skip to main content
Log in

A Bilevel Competitive Location and Pricing Model with Nonuniform Split of Demand

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under study is the bilevel competitive facility location and pricing problem which is formulated in terms of the Stackelberg game. The problem involves the two producers: the Leader and the Competitor. They consistently place their facilities and set prices. The choice of prices is based on the Bertrand model of price competition and the possibility of dividing a client’s demand if this will be profitable for both players. In this case, the demand is divided between the players in a given proportion. The complexity is investigated of finding the optimal solution of the problem and its particular cases. It is shown that the problem is \(\Sigma_2^P\)-hard. However, under certain conditions on the input parameters, the complexity decreases significantly and in some cases the problem becomes polynomially solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. H. Hotelling, “Stability in Competition,” Econom. J. 39153, 41–57 (1929).

    Google Scholar 

  2. H. A. Eiselt, G. Laporte, and J.-E. Thisse, “Competitive Location Models: A Framework and Bibliography,” Transport. Sci. 27 (1), 44–54 (1993).

    Article  MATH  Google Scholar 

  3. H. A. Eiselt and G. Laporte, “Sequential Location Problems,” Europ. J. Open Res. 962), 217–242 (1996).

    Article  MATH  Google Scholar 

  4. H. W. Hamacher and S. Nickel, “Classification of Location Models,” Locat. Sci. 6 (1), 229–242 (1998).

    Article  Google Scholar 

  5. F. Plastria, “Static Competitive Facility Location: An Overview of Optimization Approaches,” Europ. J. Open Res. 129 (3), 461–470 (2001).

    Article  MATH  Google Scholar 

  6. A. A. Panin, M. G. Pashchenko, and A. V. Plyasunov, “Bilevel Competitive Facility Location and Pricing Problems,” Automat. Remote Control 75 (4), 715–727 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Kononov, A. Panin, and A. Plyasunov, “A New Model of Competitive Location and Pricing with the Uniform Split of the Demand,” in Optimization Problems and Their Applications. OPTA 2018, Ed. by A. Eremeev, M. Khachay, Y. Kochetov, and P. Pardalos, Ser. Communications in Computer and Information Science, Vol. 871 (Springer, Cham, 2018), pp. 16–28.

    Article  Google Scholar 

  8. M. D. Garcia, P. Fernandez, and B. Pelegrin, “On Price Competition in Location-Price Models with Spatially Separated Markets,” TOP 12, 351–374 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Pelegrin, P. Fernandez, M. D. Garcia, and S. Cano, “On the Location of New Facilities for Chain Expansion under Delivered Pricing,” Omega 402), 149–158 (2012).

    Article  Google Scholar 

  10. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi, Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties (Springer, Berlin, 1999).

    Book  MATH  Google Scholar 

  11. E. Alekseeva and Yu. Kochetov, “Metaheuristics and Exact Methods for the Discrete (r"> | p)-Centroid Problem,” in Studies in Computational Intelligence, Vol. 482: Metaheuristics for Bilevel Optimization, Ed. by El-G. Talbi and L. Brotcorne (Springer, Berlin, 2013), pp. 189–219.

    Google Scholar 

  12. E. Alekseeva, Yu. Kochetov, and A. Plyasunov, “An Exact Method for the Discrete (r | p)-Centroid Problem,” J. Global Optim. 63 (3), 445–460 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  13. V. L. Beresnev and A. A. Melnikov, “A Cut Generation Algorithm to Find an Optimal Solution in a Market Competition,” Diskretn. Anal. Issled. Open 26 (2), 5–29 (2019) [J. Appl. Indust. Math. 13 (2), 351–367 (2019)].

    Google Scholar 

  14. E. Alekseeva, Yu. Kochetov, and A. Plyasunov, “Complexity of Local Search for the p-Median Problem,” Europ. J. Open Res. 191 (3), 736–752 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Davydov, Yu. Kochetov, and S. Dempe, “Local Search Approach for the Competitive Facility Location Problem in Mobile Networks,” Internal J. Artif. Intell. 16(1), 130–143 (2018).

    Google Scholar 

  16. I. A. Davydov, Yu. A. Kochetov, and E. Carrizosa, “A Local Search Heuristic for the (r | p)-Centroid Problem in the Plane,” Comput. Open Res. 52, 334–340 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. M. Lavlinskii, A. A. Panin, and A. V. Plyasunov, “Comparison of Models of Planning Public-Private Partnership,” Diskretn. Anal. Issled. Open 23 (3), 35–60 (2016) [J. Appl. Indust. Math. 10 (3), 356–369 (2016)].

    MATH  MathSciNet  Google Scholar 

  18. Yu. A. Kochetov, A. A. Panin, and A. V. Plyasunov, “Comparison of Metaheuristics for the Bilevel Facility Location and Mill Pricing Problem,” Diskretn. Anal. Issled. Open 223), 36–54 (2015) [J. Appl. Indust. Math. 9(3), 392–401(2015)].

    MATH  Google Scholar 

  19. Z. Diakova and Yu. Kochetov, “A Double VNS Heuristic for the Facility Location and Pricing Problem,” Electronic Notes in Discrete Mathematics 39 (1), 29–34 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  20. I. A. Davydov, Yu. A. Kochetov, N. Mladenovic, and D. Urosevic, “Fast Metaheuristics for the Discrete (r / p)-Centroid Problem,” Automat. Remote Control. 75 (4, 677–687, 2014.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Alekseeva, Yu. Kochetov, and E.-G. Talbi, “A Metaheuristics for the Discrete Bilevel Problem with Multiple Objectives at the Lower Level,” Intern. Trans. Open Res. 245), 959–981 (2017).

    Article  MATH  Google Scholar 

  22. I. Davydov, Yu. Kochetov, and A. Plyasunov, “On the Complexity of the (r | p)-Centroid Problem in the Plane,” TOP 22 (2), 614–623 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Iellamo, E. Alekseeva, L. Chen, M. Coupechoux, and Yu. Kochetov, “Competitive Location in Cognitive Radio Networks,” 40R 13(1), 81–110 (2015).

    MATH  MathSciNet  Google Scholar 

  24. A. A. Panin and A. V. Plyasunov, “On Complexity of the Bilevel Location and Pricing Problems,” Diskretn. Anal. Issled. Open 21, No. 5, 54–66 (2014) [J. Appl. Indust. Math. 8(4), 574–581 (2014)].

    MATH  Google Scholar 

  25. A. V. Plyasunov and A. A. Panin, “The Pricing Problem. II: Computational Complexity,” Diskretn. Anal. Issled. Open 19 (6), 56–71 (2012) [J. Appl. Indust. Math. 7 (3), 420–430 (2013)].

    MATH  Google Scholar 

Download references

Funding

The authors were supported by the Russian Science Foundation (project no. 17-11-01021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kononov, A. A. Panin or A. V. Plyasunov.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 3, pp. 27–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononov, A.V., Panin, A.A. & Plyasunov, A.V. A Bilevel Competitive Location and Pricing Model with Nonuniform Split of Demand. J. Appl. Ind. Math. 13, 500–510 (2019). https://doi.org/10.1134/S1990478919030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919030104

Keywords

Navigation