Skip to main content
Log in

Abstract

—We say that two edges in the hypercube are close if their endpoints form a 2-dimensional subcube. We consider the problem of constructing a 2-factor not containing close edges in the hypercube graph. For solving this problem,we use the new construction for building 2-factors which generalizes the previously known stream construction for Hamiltonian cycles in a hypercube.Owing to this construction, we create a family of 2-factors without close edges in cubes of all dimensions starting from 10, where the length of the cycles in the obtained 2-factors grows together with the dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. I. S. Bykov, “On Locally Balanced Gray Codes,” Diskretn. Anal. Issled. Oper. 23 (1), 51–64 (2016) [J. Appl. Indust. Math. 10 (1), 78–85 (2016)].

    MathSciNet  MATH  Google Scholar 

  2. A. A. Evdokimov, “Chain of Maximal Length in a Unitary n-Dimensional Cube,” Mat. Zametki 6, 309–319 (1969) [Math. Notes 6, 642–648 (1969)].

    MathSciNet  Google Scholar 

  3. D. S. Krotov, “Inductive Construction of Perfect Ternary Constant-Weight Codes with Distance 3,” Problemy Peredachi Inform. 37 (1), 3–11 (2001) [Problems Inform. Transmission 37 (1), 1–9 (2001)].

    MathSciNet  MATH  Google Scholar 

  4. A. L. Perezhogin, “On Locally Isometric Coding of Natural Numbers,” Diskretn. Anal. Issled. Oper. 3 (4), 69–76 (1996).

    MathSciNet  MATH  Google Scholar 

  5. A. L. Perezhogin, “On Special Perfect Matchings in a Boolean Cube,” Diskretn. Anal. Issled. Oper. Ser. 1, 12 (4), 51–59 (2005).

    MathSciNet  MATH  Google Scholar 

  6. A. L. Perezhogin and V. N. Potapov, “On the Number of Hamiltonian Cycles in a Boolean Cube,” Diskretn. Anal. Issled. Oper. Ser. 1, 8 (2), 52–62 (2001).

    MathSciNet  MATH  Google Scholar 

  7. J. Fink, “PerfectMatchings Extend to Hamilton Cycles in Hypercubes,” J. Combin. Theory Ser. B, 97 (6), 1074–1076 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Goddyn and P. Gvozdjak, “BinaryGrayCodes with Long BitRuns,” Electron. J. Combin. 10 (2003).

  9. P. Gregor, T. Mutze, and J. Nummenpalo, “A Short Proof of the Middle Levels Theorem,” Discrete Analysis (2018). Published online at http://dx.doi.org/10.19086/da.3659.

    Google Scholar 

  10. W. H. Kautz, “Unit-Distance Error-Checking Codes,” IRE Trans. Electronic Computers EC-7, 179–180 (1958).

    Article  Google Scholar 

  11. A. J. van Zanten and L. Haryanto, “Sets of Disjoint Snakes Based on a Reed-Muller Code and Covering the Hypercube,” Des. Codes Cryptogr. 48 (3), 207–229 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Zemor, “An Upper Bound on the Size of the Snake-in-the-Box,” Combinatorica 17 (2), 287–298 (1997).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Bykov.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 3, pp. 5–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, I.S. 2-Factors Without Close Edges in the n-Dimensional Cube. J. Appl. Ind. Math. 13, 405–417 (2019). https://doi.org/10.1134/S1990478919030037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919030037

Keywords

Navigation