Skip to main content
Log in

Asymptotics for the Logarithm of the Number of (k, l)-Solution-Free Collections in an Interval of Naturals

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

A collection (A1, … ,Ak+l) of subsets of an interval [1, n] of naturals is called (k, l)-solution-free if there is no set (a1, … , ak+l) ∈ A1 × ⋯ × Ak+l that is a solution to the equation x1 + ⋯ + xk = xk+1 + ⋯ + xk+l. We obtain the asymptotics for the logarithm of the number of sets (k, l)-free of solutions in an interval [1, n] of naturals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. P. J. Cameron and P. Erdös, “On the Number of Sets of Integers with Various Properties,” in Number Theory (Proceedings of the 1st Conference. Canadian Number Theory Association, Banff, Canada, April 17–27, 1988) (de Gruyter, Berlin, 1990), pp. 61–79.

    Google Scholar 

  2. N. J. Calkin, “On the Number of Sum-Free Sets,” Bull. London Math. Soc. 22, 140–144 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon, “Independent Sets in Regular Graphs and Sum-Free Subsets of Abelian Groups,” Israel J. Math. 73, 247–256 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Sapozhenko, “Abstract Erdös Conjecture,” Dokl. Akad. Nauk 393(6), 749–752 (2003).

    MathSciNet  Google Scholar 

  5. B. Green, “Abstract Erdös conjecture,” Bull. Lond. Math. Soc. 36(6), 769–778 (2004).

    Article  MATH  Google Scholar 

  6. A. A. Sapozhenko, “On the Number of Sum-Free Sets in Abelian Groups,” Vestnik Moskov. Gos. Univ. Ser. 1 Mat. Mekh. 4, 14–17 (2002).

    MathSciNet  MATH  Google Scholar 

  7. V. F. Lev, T. Łuczak, and T. Schoen, “Sum-free sets in Abelian groups,” Israel J. Math. 125, 347–367 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. F. Lev and T. Schoen, “Cameronab—Erdös Modulo a Prime,” Finite Fields Appl. 8(1), 108–119 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Green and I. Z. Ruzsa, “Sum-Free Sets in Abelian Groups,” Israel J. Math. 147, 157–188 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. A. Sapozhenko, “Abstract Erdös Problem for Groups of Prime Order,” Zh. Vychisl. Mat. Mat. Fiz. 49(8), 1503–1509 (2009) [Comput. Math. Math. Phys. 49 (6), 1435–1441 (2009)].

    MathSciNet  MATH  Google Scholar 

  11. N. J. Calkin and A. C. Taylor, “Counting Sets of Integers, No k of Which Sum to Another,” J. Number Theory 57, 323–327 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu. Bilu, “Sum-Free Sets and Related Sets,” Combinatorica 18(4), 449–459 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. J. Calkin and J. M. Thomson, “Counting Generalized Sum-Free Sets,” J. Number Theory 68, 151–160 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Schoen, “A Note on the Number of (k, l)-Sum-Free Sets,” Electron. J. Comb. 17(1), 1–8 (2000).

    MathSciNet  MATH  Google Scholar 

  15. V. F. Lev, “Sharp Estimates forthe Number of Sum-Free Sets,” J. Reine Angew. Math. 555, 1–25 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. G. Sargsyan, “Asymptotics of the Logarithm of the Number of (k, l)-Sum-Free Sets inanAbelianGroup,” Diskretn. Mat. 26(1), 91–99 (2014) [Discrete Math. Appl. 25 (2), 93–99 (2014)].

    Article  MathSciNet  Google Scholar 

  17. B. Green, “A Szemerédi-Type Regularity Lemma in Abelian Groups,” Geom. Funct. Anal. 15(2), 340–376 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Sapozhenko or V. G. Sargsyan.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 2, pp. 129–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhenko, A.A., Sargsyan, V.G. Asymptotics for the Logarithm of the Number of (k, l)-Solution-Free Collections in an Interval of Naturals. J. Appl. Ind. Math. 13, 317–326 (2019). https://doi.org/10.1134/S1990478919020133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919020133

Keywords

Navigation