Abstract
A collection (A1, … ,Ak+l) of subsets of an interval [1, n] of naturals is called (k, l)-solution-free if there is no set (a1, … , ak+l) ∈ A1 × ⋯ × Ak+l that is a solution to the equation x1 + ⋯ + xk = xk+1 + ⋯ + xk+l. We obtain the asymptotics for the logarithm of the number of sets (k, l)-free of solutions in an interval [1, n] of naturals.
References
P. J. Cameron and P. Erdös, “On the Number of Sets of Integers with Various Properties,” in Number Theory (Proceedings of the 1st Conference. Canadian Number Theory Association, Banff, Canada, April 17–27, 1988) (de Gruyter, Berlin, 1990), pp. 61–79.
N. J. Calkin, “On the Number of Sum-Free Sets,” Bull. London Math. Soc. 22, 140–144 (1990).
N. Alon, “Independent Sets in Regular Graphs and Sum-Free Subsets of Abelian Groups,” Israel J. Math. 73, 247–256 (1991).
A. A. Sapozhenko, “Abstract Erdös Conjecture,” Dokl. Akad. Nauk 393(6), 749–752 (2003).
B. Green, “Abstract Erdös conjecture,” Bull. Lond. Math. Soc. 36(6), 769–778 (2004).
A. A. Sapozhenko, “On the Number of Sum-Free Sets in Abelian Groups,” Vestnik Moskov. Gos. Univ. Ser. 1 Mat. Mekh. 4, 14–17 (2002).
V. F. Lev, T. Łuczak, and T. Schoen, “Sum-free sets in Abelian groups,” Israel J. Math. 125, 347–367 (2001).
V. F. Lev and T. Schoen, “Cameronab—Erdös Modulo a Prime,” Finite Fields Appl. 8(1), 108–119 (2002).
B. Green and I. Z. Ruzsa, “Sum-Free Sets in Abelian Groups,” Israel J. Math. 147, 157–188 (2005).
A. A. Sapozhenko, “Abstract Erdös Problem for Groups of Prime Order,” Zh. Vychisl. Mat. Mat. Fiz. 49(8), 1503–1509 (2009) [Comput. Math. Math. Phys. 49 (6), 1435–1441 (2009)].
N. J. Calkin and A. C. Taylor, “Counting Sets of Integers, No k of Which Sum to Another,” J. Number Theory 57, 323–327 (1996).
Yu. Bilu, “Sum-Free Sets and Related Sets,” Combinatorica 18(4), 449–459 (1998).
N. J. Calkin and J. M. Thomson, “Counting Generalized Sum-Free Sets,” J. Number Theory 68, 151–160 (1998).
T. Schoen, “A Note on the Number of (k, l)-Sum-Free Sets,” Electron. J. Comb. 17(1), 1–8 (2000).
V. F. Lev, “Sharp Estimates forthe Number of Sum-Free Sets,” J. Reine Angew. Math. 555, 1–25 (2003).
V. G. Sargsyan, “Asymptotics of the Logarithm of the Number of (k, l)-Sum-Free Sets inanAbelianGroup,” Diskretn. Mat. 26(1), 91–99 (2014) [Discrete Math. Appl. 25 (2), 93–99 (2014)].
B. Green, “A Szemerédi-Type Regularity Lemma in Abelian Groups,” Geom. Funct. Anal. 15(2), 340–376 (2005).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 2, pp. 129–144.
Rights and permissions
About this article
Cite this article
Sapozhenko, A.A., Sargsyan, V.G. Asymptotics for the Logarithm of the Number of (k, l)-Solution-Free Collections in an Interval of Naturals. J. Appl. Ind. Math. 13, 317–326 (2019). https://doi.org/10.1134/S1990478919020133
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478919020133