Advertisement

Journal of Applied and Industrial Mathematics

, Volume 13, Issue 2, pp 290–301 | Cite as

Functionally Invariant Solutions to Maxwell’s System: Dependence on Time

  • M. V. NeshchadimEmail author
  • A. A. SimonovEmail author
Article
  • 8 Downloads

Abstract

We consider the problem of finding the generalized functionally invariant solutions to Maxwell’s equations. The solutions found contain some functional arbitrariness that can be used for determining the parameters of Maxwell’s system (the dielectric and magnetic constants).

Keywords

Maxwell’s system generalized functionally invariant solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Neshchadim, “Functionally Invariant Solutions to Maxwell’s System,” Sibirsk. Zh. Industr. Mat. 20 (1), 66–74 (2017) [J. Appl. Indust. Math. 11 (1), 107–114 (2017)].MathSciNetzbMATHGoogle Scholar
  2. 2.
    N. P. Erugin and M. M. Smirnov, “Functionally Invariant Solutions of Differential Equations,” Differentsial’nye Uravneniya 17 (5), 853–865 (1981) [Differential Equations 17, 563–573 (1981)].MathSciNetzbMATHGoogle Scholar
  3. 3.
    V. M. Babichand V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves (Nauka, Moscow, 1972) [in Russian].Google Scholar
  4. 4.
    V. M. Babich, “The Multidimensional WKB Method or Ray Method. Its Analogs and Generalizations. Partial Differential Equations—5,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 34, 93–134 (1988).zbMATHGoogle Scholar
  5. 5.
    M. V. Neshchadim, “Classes of Generalized Functionally Invariant Solutions of the Wave Equation. I,” Siberian Electron. Math. Reports 10, 418–435 (2013) [see http://semr.math.nsc.ru/v10/p418-435.pdf].MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II: Partial Differential Equations (Interscience, New York, 1962; Mir, Moscow, 1964).zbMATHGoogle Scholar
  7. 7.
    V. I. Smirnov and S. L. Sobolev, “A New Method for Solving the Planar Problem of Elastic Vibrations,” Trudy Seismolog. Inst. Akad. Nauk SSSR 20, 1–37 (1932).Google Scholar
  8. 8.
    V. I. Smirnov and S. L. Sobolev, “On the Application of a New Method to the Study of Elastic Vibrations in Space in the Presence of Axial Symmetry,” Trudy Seismolog. Inst. Akad. Nauk SSSR 29, 43–51 (1933).Google Scholar
  9. 9.
    S. L. Sobolev, “Functionally Invariant Solutions to the Wave Equation,” Trydy Fiz.-Mat. Inst. Steklov. 5, 259–264 (1934).Google Scholar
  10. 10.
    M. S. Shneerson, “Maxwell’s Equations and Functionally Invariant Solutions to the Wave Equation,” Differentsial’nye Uravneniya 4 (4), 743–758 (1968).MathSciNetGoogle Scholar
  11. 11.
    N. T. Stel’mashuk, “Construction of Functionally Invariant Solutions to Maxwell’s System for an Electromagnetic Field in Vacuum,” Vestnik Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauki No. 4, 35–39 (1974).MathSciNetGoogle Scholar
  12. 12.
    M. V. Neshchadim, “Solutions to Maxwell’s System with Zero Invariants,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 6 (3), 59–61 (2006).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Yu. E. Anikonov and M. V. Neshchadim, “On Analytical Methods in the Theory of Inverse Problems for Hyperbolic Equations. I,” Sibirsk. Zh. Industr. Mat. 14 (1), 27–39 (2011) [J. Appl. Indust. Math. 5 (4), 506–518 (2011)].MathSciNetzbMATHGoogle Scholar
  14. 14.
    Yu. E. Anikonov and M. V. Neshchadim, “On Analytical Methods in the Theory of Inverse Problems for Hyperbolic Equations. II,” Sibirsk. Zh. Industr. Mat. 14 (2), 28–33 (2011) [J. Appl. Indust. Math. 6 (1), 6–11 (2012)].zbMATHGoogle Scholar
  15. 15.
    L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).zbMATHGoogle Scholar
  16. 16.
    P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986; Mir, Moscow, 1989).CrossRefzbMATHGoogle Scholar
  17. 17.
    M. V. Neshchadim, “Equivalent Transformations and Some Exact Solutions to the System of Maxwell’s Equations,” Selçuk J. Appl. Math. 3 (2), 99–108 (2002).MathSciNetzbMATHGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon Press, Oxford, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations