Skip to main content
Log in

A Polynomial 3/5-Approximate Algorithm for the Asymmetric Maximization Version of the 3-PSP

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We present a first polynomial algorithm with guaranteed approximation ratio for the asymmetric maximization version of the asymmetric 3-Peripatetic Salesman Problem (3-APSP). This problem consists in finding the three edge-disjoint Hamiltonian circuits of maximal total weight in a complete weighted digraph. We prove that the algorithm has guaranteed approximation ratio 3/5 and cubic running-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Krarup, “The Peripatetic Salesman and Some Related Unsolved Problems,” in Combinatorial Programming: Methods and Applications (Proceedings of NATO Advance Study Institute, Versailles, France, September 2–13, 1974) (Reidel, Dordrecht, 1975), pp. 173–178.

    Google Scholar 

  2. A. A. Ageev, A. E. Baburin, and E. Kh. Gimadi, “A 3/4 Approximation Algorithm for Finding Two Disjoint Hamiltonian Cycles of Maximum Weight,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (2), 11–20 (2006) [J. Appl. Indust. Math. 1 (2), 142–147 (2007)].

    MATH  Google Scholar 

  3. A. N. Glebov and D. Zh. Zambalaeva, “A Polynomial Algorithm with Approximation Ratio 7/9 for the Maximum 2-Peripatetic Salesmen Problem,” Diskretn. Anal. Issled. Oper. 18 (4), 17–48 (2011) [J. Appl. Indust. Math. 6 (1), 69–89 (2012)].

    MathSciNet  MATH  Google Scholar 

  4. A. A. Ageev and A. V. Pyatkin, “A 2-Approximation Algorithm for the Metric 2-Peripatetic Salesman Problem,” Diskretn. Anal. Issled. Oper. 16 (4), 3–20 (2009).

    MathSciNet  MATH  Google Scholar 

  5. A. E. Baburin, E. Kh. Gimadi, and N. M. Korkishko, “Approximation Algorithms for Finding Two Edge-Disjoint Hamiltonian Cycles of Minimal Total Weight,” Diskretn. Anal. Issled. Oper. Ser. 2, 11 (1), 11–25 (2004).

    MathSciNet  MATH  Google Scholar 

  6. A. N. Glebov and A. V. Gordeeva, “An Algorithm with Approximation Ratio 5/6 for the Metric Maximum m-PSP,” in Discrete Optimization and Operations Research (Proceedings of the 9th International Conference DOOR, Vladivostok, Russia, September 19–23, 2016) (Springer, Cham, 1982), pp. 159–170.

    Google Scholar 

  7. A. E. Baburin and E. Kh. Gimadi, “On the Asymptotic Optimality of an Algorithm for Solving the Maximum m-PSP in a Multidimensional Euclidean Space,” Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk 16 (3), 12–24 (2010) [Proc. Steklov Inst. Math. 272 (Suppl. 1), S1–S13 (2011)].

    Google Scholar 

  8. E. Kh. Gimadi, “Asymptotically Optimal Algorithm for Finding One and Two Edge-Disjoint Traveling Salesman Routes of Maximal Weight in Euclidean Space,” Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk 14 (2), 23–32 (2008) [Proc. Steklov Inst. Math. 263 (Suppl. 2), S57–S67 (2008)].

    MathSciNet  MATH  Google Scholar 

  9. E. Kh. Gimadi, Yu. V. Glazkov, and A. N. Glebov, “Approximation Algorithms for Solving the 2-Peripatetic Salesman Problem on a Complete Graph with Edge Weights 1 and 2,” Diskretn. Anal. Issled. Oper. Ser. 2, 14 (2), 41–61 (2007) [J. Appl. Indust. Math. 3 (1), 46–60 (2009)].

    MATH  Google Scholar 

  10. E. Kh. Gimadi and E. V. Ivonina, “Approximation Algorithms for the Maximum 2-Peripatetic Salesman Problem,” Diskretn. Anal. Issled. Oper. Ser. 2, 19 (1), 17–32 (2012) [J. Appl. Indust. Math. 6 (3), 295–305 (2012)].

    MATH  Google Scholar 

  11. A. N. Glebov, A. V. Gordeeva, and D. Zh. Zambalaeva, “An Algorithm with Approximation Ratio 7/5 for the Minimum 2-Peripatetic Salesmen Problem with Different Weight Functions,” Sibir. Electron. Mat. Izv. 8, 296–309 (2011).

    MATH  Google Scholar 

  12. A. N. Glebov and D. Zh. Zambalaeva, “An Approximation Algorithm for the Minimum 2-Peripatetic Salesmen Problem with Different Weight Functions,” Diskretn. Anal. Issled. Oper. 18 (5), 11–37 (2011) [J. Appl. Indust. Math. 6 (2), 167–183 (2012)].

    MathSciNet  MATH  Google Scholar 

  13. R. Wolfter Calvo and R. Cordone, “A Heuristic Approach to the Overnight Security Service Problem,” Comput. Oper. Res. 30, 1269–1287 (2003).

    Article  MATH  Google Scholar 

  14. J. B. J. M. De Kort, “A Branch and Bound Algorithm for Symmetric 2-PSP,” European J. Oper. Res. 70, 229–243 (1993).

    Article  MATH  Google Scholar 

  15. M. J. D. De Brey and A. Volgenant, “Well-Solved Cases of the 2-Peripatetic Salesman Problem,” Optimization 39 (3), 275–293 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. B. J. M. De Kort, “Lower Bounds for Symmetric K-PSP,” Optimization 22 (1), 113–122 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. B. J. M. De Kort, “Upper Bounds for the Symmetric 2-PSP,” Optimization 23 (4), 357–367 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Kh. Gimadi, “Approximation Efficient Algorithms with Performance Guarantees for some Hard Routing Problems,” in Proceedings of II International Conference “Optimization and Applications” OPTIMA-2011, Petrovac, Montenegro, September 25-October 2, 2011 (Vych. Tsentr Ross. Akad. Nauk, Moscow, 2011), pp. 98–101.

    Google Scholar 

  19. The Traveling Salesman Problem and Its Variations, Ed. by G. Gutin and A. P. Punnen (Kluwer Acad. Publ., Dordrecht, 2002).

    MATH  Google Scholar 

  20. A. N. Glebov, D. Zh. Zambalaeva, and A. A. Skretneva, “A 2/3-Approximation Algorithm for the Maximum Asymmetric 2-Peripatetic Salesmen Problem,” Diskretn. Anal. Issled. Oper. 21 (6), 11–20 (2014).

    MathSciNet  MATH  Google Scholar 

  21. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, “Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs”, J. ACM 52 (4), 602–626 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. I. Serdyukov, “An Algorithm with an Estimate for the Maximum Traveling Salesman Problem,” in Controlled Systems, Vol. 25 (Inst. Mat. SO AN SSSR, Novosibirsk, 1984), pp. 80–86.

    Google Scholar 

  23. R. Hassin and S. Rubinstein, “Better Approximations for Max TSP,” Inform. Process. Lett. 75 (4), 181–186 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Paluch, M. Mucha, and A. Madry, “A 7/9-Approximation Algorithm for the Maximum Traveling Salesman Problem,” in Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques (Proceedings of the 12th International Workshop APPROX-2009 and the 13th International Workshop RANDOM-2009, Berkeley, CA, USA, August 21–23, 2009) (Springer, Heidelberg, 1982), pp. 298–311.

    Google Scholar 

  25. S. Dudycz, J. Marcinkowski, K. Paluch, and B. A. Rybicki, “4/5-Approximation Algorithm for the Maximum Traveling Salesman Problem”, in Integer Programming and Combinatorial Optimization (Proceedings of 19th International Conference IPCO-2017, Waterloo, ON, Canada, June 26–28, 2017) (Springer, 2017), pp. 173–185.

  26. H. N. Gabow, “An Efficient Reduction Technique for Degree-Restricted Subgraph and Bidirected Network Flow Problems,” in Proceedings of 15th Annual ACM Symposium on Theory of Computing, Boston, USA, April 25–27, 1983) (ACM, New York, 1983), pp. 448–456.

    Google Scholar 

  27. J. E. Hopcroft and R. M. Karp, “An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs,” SIAM J. Comput. 2 (4), 225–231 (1973).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous Reviewer for the careful reading of the manuscript and valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Glebov or S. G. Toktokhoeva.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 2, pp. 30–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebov, A.N., Toktokhoeva, S.G. A Polynomial 3/5-Approximate Algorithm for the Asymmetric Maximization Version of the 3-PSP. J. Appl. Ind. Math. 13, 219–238 (2019). https://doi.org/10.1134/S1990478919020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919020042

Keywords

Navigation