Skip to main content
Log in

Abstract

The second Riddell relation relates the generating functions for the number of labeled connected graphs and the number of labeled blocks. We consider the conditions under which this relation is true for a subclass of connected graphs.Under these conditions, the formulas are valid that express the number of graphs from a subclass of labeled connected graphs trough the generating function of their blocks. By way of application, we obtain expressions for the numbers of labeled connected and 2-connected series-parallel graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. W. Ford and G. E. Uhlenbeck, “Combinatorial Problems in the Theory of Graphs. I,” Proc. Nat. Acad. Sci. U.S.A. 42 (3), 122–128 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. J. Riddell, Jr. and G. E. Uhlenbeck, “On the Theory of the Virial Development of the Equation of State of Monoatomic Gases,” J. Chem. Phys. 21 (11), 2056–2063 (1953).

    Article  MathSciNet  Google Scholar 

  3. V. A. Voblyi, “On Enumeration of Labelled Connected Graphs by the Number of Cutpoints,” Diskretn.Mat. 20 (1), 52–63, (2008) [DiscreteMath. Appl. 18 (1), 57–69 (2008)].

    MathSciNet  MATH  Google Scholar 

  4. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration (John Wiley & Sons, New York, 1983; Nauka, Moscow, 1990).

    MATH  Google Scholar 

  5. V. N. Sachkov, Introduction to Combinatorial Methods of Discrete Mathematics (MTsNMO, Moscow, 2004) [in Russian].

    Google Scholar 

  6. F. Harary and E.M. Palmer, Graphical Enumeration (Acad. Press, New York, 1973; Mir,Moscow, 1977).

    MATH  Google Scholar 

  7. F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures (Cambridge Univ. Press, Cambridge, 1998).

    MATH  Google Scholar 

  8. A. Meir and J.W. Moon, “On Nodes of Degree Two in Random Trees,”Mathematika 15 (2), 188–192 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Drmota, Random Trees: An Interplay between Combinatorics and Probability (Springer, New York, 2009).

    Book  MATH  Google Scholar 

  10. C. McDiarmid and A. Scott, “Random Graphs froma Block Stable Class,” European J. Combin. 58, 96–106 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Noy, “Random Planar Graphs and Beyond,” in Proceedings of International Congress onMathematics (Seoul, Korea, August 13–21, 2014), Vol. IV (ICM 2014 Org. Comm., Seoul, 2014), pp. 407–430.

    Google Scholar 

  12. V. A. Voblyi and A. K. Meleshko, “Enumeration of Labeled Block-Cactus Graphs,” Diskretn. Anal. Issled. Oper. 21 (2), 24–32 (2014) [J. Appl. Indust. Math. 8 (3), 422–427 (2014)].

    MathSciNet  MATH  Google Scholar 

  13. J. G. Stemple and M. E. Watkins, “On Planar Geodetic Graphs,” J. Combin. Theory 4 (2), 101–117 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Whitney, “Non-Separable and Planar Graphs,” Trans. Amer.Math. Soc. 34 (2), 339–362 (1932).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Tazawa, “Enumeration of Labeled 2-Connected Euler Graphs,” J. Combin. Inform. Syst. Sci. 23 (1–4), 407–414 (1998).

    MATH  Google Scholar 

  16. G. Labelle, P. Leroux, and M.G. Ducharme, “GraphWeights Arising fromMayer’s TheoryCluster Integrals,” Sémin. Lothar. Combin. 54, Art. B54m (2007).

    Google Scholar 

  17. V. A. Voblyi, “A Formula for the Number of Labeled Connected Graphs,” Diskretn. Anal. Issled.Oper. 19 (4), 48–59 (2012).

    MathSciNet  MATH  Google Scholar 

  18. V. A. Voblyi, “Enumeration of Labeled Connected Graphs with GivenOrder and Size,” Diskretn.Anal. Issled. Oper. 23 (2), 5–20 (2016) [J. Appl. Indust. Math. 10 (2), 302–310 (2016)].

    MathSciNet  MATH  Google Scholar 

  19. M. Bodirsky, O. Gimenez, M. Kang, and M. Noy, “Enumeration and Limit Laws of Series-Parallel Graph,” European J. Combin. 28 (8), 2091–2105, 2007.

    Google Scholar 

  20. S. Radhavan, “Low-Connectivity Network Design on Series-Parallel Graphs,” Networks 43 (3), 163–176 (2004).

    Article  MathSciNet  Google Scholar 

  21. K. Takamizawa, T. Nishezeki, and N. Saito, “Linear-Time Computability of Combinatorial Problems on Series-Parallel Graphs,” J. ACM29 (3), 623–641 (1982).

    Google Scholar 

  22. The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org (accessed Nov. 5, 2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Voblyi.

Additional information

Russian Text © V.A. Voblyi, 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 1, pp. 20–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voblyi, V.A. The Second Riddell Relation and Its Consequences. J. Appl. Ind. Math. 13, 168–174 (2019). https://doi.org/10.1134/S1990478919010174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919010174

Keywords

Navigation