Abstract
It is established that we can implement almost every Boolean function on n variables by a logic network in the basis {x&y, x ∨ y, x ⨁ y, 1}, allowing a complete fault detection test with length at most 4 under arbitrary stuck-at faults at outputs of gates. The following assertions are also proved:We can implement each Boolean function on n variables by a logic network in the basis {x&y, x ∨ y, x ⨁ y, 1} (in the basis {x&y, x ∨ y, x ∨ y, x ⨁ y}) containing at most one dummy variable and allowing a complete fault detection test of length at most 5 (at most 4, respectively) under faults of the same type.
References
S. V. Yablonskii, “Reliability and Monitoring of Control Systems,” in Proceedings of All-Union Seminar on Discrete Mathematics and Its Applications, Moscow, Russia, January 31—February 2, 1984 (Izd. MGU,Moscow, 1986), pp. 7–12.
S. V. Yablonskii, “Certain Questions of Reliability and Monitoring of Control Systems,” in Mathematical Problems of Cybernetics, Vol. 1 (Nauka, Moscow, 1988), pp. 5–25.
N. P. Red’kin, Reliability and Diagnosis of Circuits (Izd.Moskov.Gos. Univ.,Moscow, 1992) [in Russian].
K. A. Popkov, “Complete Fault Detection Tests of Length 2 for Logic Networks under Stuck-At Faults of Gates,” Diskretn. Anal. Issled. Oper. 25 (2), 62–81 (2018) [J. Appl. Indust. Math. 12 (2), 302–312 (2018)].
N. P. Red’kin, “On Complete Checking Tests for Circuits of Functional Elements,” Vestnik Moskov. Univ. Ser. 1:Mat.Mekh. No. 1, 72–74, (1986).
N. P. Red’kin, “On Complete Fault Detection Tests for Logic Circuits,” in Mathematical Problems of Cybernetics, Vol. 2 (Nauka, Moscow, 1989), pp. 198–222.
D. S. Romanov, “On Synthesis of Circuits Admitting Complete Fault Detection Test Sets of Constant Length under Arbitrary Constant Faults at theOutputs of the Gates,” Diskretn.Mat. 25 (2), 104–120 (2013) [DiscreteMath. Appl. 23 (3–4), 343–362 (2013)].
N. P. Red’kin, “On Circuits Admitting Short Tests,” VestnikMoskov.Univ. Ser. 1: Mat.Mekh.No. 2, 17–21 (1988).
Yu. V. Borodina, “Synthesis of Easily-Tested Circuits in the Case of Single-Type Constant Malfunctions at the Element Outputs,” VestnikMoskov. Univ. Ser. 15: Vychisl.Mat. Kibernet.No. 1, 40–44 (2008) [Moscow Univ. Comput. Math. Cybern. 32 (1), 42–46 (2008)].
Yu. V. Borodina and P. A. Borodin, “Synthesis of Easily Testable Circuits over the Zhegalkin Basis in the Case of Constant Faults of Type 0 at Outputs of Elements,” Diskretn.Mat. 22 (3), 127–133 (2010) [Discrete Math. Appl. 20 (4), 441–449 (2010)].
Yu. V. Borodina, “Lower Estimate of the Length of the Complete Test in the Basis x y,” Vestnik Moskov. Univ. Ser. 1: Mat.Mekh.No. 4, 49–51 (2015) [Moscow Univ.Math. Bull. 70 (4), 185–186 (2015)].
S. M. Reddy, “Easily Testable Realization for Logic Functions,” IEEE Trans. Comput. 21 (1), 124–141 (1972).
S. DasGupta, C. R. P. Hartmann, and L. D. Rudolph, “Dual-Mode Logic for Function-Independent Fault Testing,” IEEE Trans. Comput. 29 (11), 1025–1029 (1980).
V. Geetha, N. Devarajan, and P. N. Neelakantan, “Network Structure for Testability Improvement in Exclusive-OR Sum of Products Reed–Muller Canonical Circuits,” Int. J. Eng. Res. Gen. Sci. 3 (3), 368–378 (2015).
J. P. Hayes, “On Modifying Logic Networks to Improve Their Diagnosability,” IEEE Trans. Comput. 23 (1), 56–62 (1974).
T. Hirayama, G. Koda, Y. Nishitani, and K. Shimizu, “Easily TestableRealization Based on OR-AND-EXOR Expansion with Single-Rail Inputs,” IEICE Trans. Inform. Syst. E-82D (9), 1278–1286 (1999).
A. K. Jameil, “A New Single Stuck Fault Detection Algorithm for Digital Circuits,” Int. J. Eng. Res. Gen. Sci. 3 (1), 1050–1056 (2015).
P. N. Neelakantan and A. Ebenezer Jeyakumar, “Single Stuck-At Fault Diagnosing Circuit of Reed–Muller Canonical Exclusive-Or Sum of Product Boolean Expressions,” J. Comput. Sci. 2 (7), 595–599 (2006).
N. P. Rahagude, “Integrated Enhancement of Testability and Diagnosability for Digitac Circuits,” Mast. Sci. Dissertation (VA Polytech. Inst. State Univ., Blacksburg, VA, 2010).
H. Rahaman, D. K. Das, and B. B. Bhattacharya, “Testable Design of AND-EXOR Logic Networks with Universal Test Sets,” Comput. Electr. Eng.35 (5), 644–658 (2009).
K. K. Saluja and S.M. Reddy, “On Minimally Testable Logic Networks,” IEEE Trans. Comput. 23 (5), 552–554 (1974).
K. K. Saluja and S.M. Reddy, “Fault Detecting Test Sets for Reed–MullerCanonic Networks,” IEEE Trans. Comput. 24 (10), 995–998 (1975).
S. P. Singh and B. B. Sagar, “Stuck-At Fault Detection in Combinational Network Coefficients of the RMC with Fixed Polarity (Reed–MullerCoefficients),” Internat. J. Emerg. Trends Electr. Electron (IJETEE) 1 (3), 93–96 (2013).
K. A. Popkov, “Tests of Contact Closure for Contact Circuits,” Diskretn. Mat. 28 (1), 87–100 (2016) [DiscreteMath. Appl. 26 (5), 299–308 (2016)].
Author information
Authors and Affiliations
Corresponding author
Additional information
Russian Text © K.A. Popkov, 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 1, pp. 89–113.
Rights and permissions
About this article
Cite this article
Popkov, K.A. Short Complete Fault Detection Tests for Logic Networks with Fan-In Two. J. Appl. Ind. Math. 13, 118–131 (2019). https://doi.org/10.1134/S1990478919010137
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478919010137