Skip to main content
Log in

König Graphs with Respect to the 4-Path and Its Spanning Supergraphs

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We describe the class of graphs whose every subgraph has the next property: The maximal number of disjoint 4-paths is equal to the minimal cardinality of sets of vertices such that every 4-path in the subgraph contains at least one of these vertices.We completely describe the set of minimal forbidden subgraphs for this class. Moreover, we present an alternative description of the class based on the operations of edge subdivision applied to bipartite multigraphs and the addition of the so-called pendant subgraphs, isomorphic to triangles and stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. E. Alekseev and D. B. Mokeev, “König Graphs with Respect to 3-Paths,” Diskretn. Anal. Issled. Oper. 19 (4), 3–14 (2012).

    MathSciNet  MATH  Google Scholar 

  2. F. Kardoš, J. Katrenič, and I. Schiermeyer, “On Computing the Minimum 3-Path Vertex Cover and Dissociation Number of Graphs,” Theor. Comput. Sci. 412 (50), 7009–7017 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Li and J. Tu, “A 2-Approximation Algorithm for the Vertex Cover P4Problem in Cubic Graphs,” Int. J. Comput.Math. 91 (10), 2103–2108 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. S. Malyshev, “The Impact of the Growth Rate of the Packing Number of Graphs on the Computational Complexity of the Independent Set Problem,” Diskretn. Mat. 25 (2), 63–67 (2013) [Discrete Math. Appl. 23 (3–4), 245–249 (2013)].

    Article  Google Scholar 

  5. P. Hell, “Graph Packings,” Electron. Notes DiscreteMath. 5, 170–173 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Yuster, “Combinatorial and Computational Aspects of Graph Packing and Graph Decomposition,” Comput. Sci. Rev. 1 (1), 12–26 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Brešar, F. Kardoš, J. Katrenič, and G. Semanišin, “Minimum k-Path Vertex Cover,” Discrete Appl.Math. 159 (12), 1189–1195 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Tu and W. Zhou, “A Primal-Dual Approximation Algorithm for the Vertex Cover P3Problem,” Theor. Comput. Sci. 412 (50), 7044–7048 (2011).

    Article  MATH  Google Scholar 

  9. J. Edmonds, “Paths, Trees, and Flowers,” Can. J. Math. 17 (3–4), 449–467 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. G. Kirkpatrick and P. Hell, “On the Completeness of a Generalized Matching Problem,” in Proceedings of 10th Annual ACM Symposium on Theory of Computing (San Diego, USA, May 1–3, 1978) (ACM, New York, 1978), pp. 240–245.

    Google Scholar 

  11. S. Masuyama and T. Ibaraki, “Chain Packing in Graphs,” Algorithmica 6 (1), 826–839 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. S. Devi, A. C. Mane, and S. Mishra, “Computational Complexity of Minimum P4Vertex Cover Problem for Regular and K1,4-Free Graphs,” Discrete Appl.Math. 184 (12), 114–121 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. E. Alekseev and D. B. Mokeev, “König Graphs for 3-Paths and 3-Cycles,” Discrete Appl.Math. 204, 1–5 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. R.W. Deming, “IndependenceNumbers ofGraphs–an Extension of the König–Egervary Theorem,” Discrete Math. 27, 23–33 (1979).

    Article  MathSciNet  Google Scholar 

  15. A. Kosowski, M. Małafiejski, and P. Żyličski, “Combinatorial and Computational Aspects of Graph Packing and Graph Decomposition,” Graphs Combin. 24 (5), 461–468 (2008).

    Article  MathSciNet  Google Scholar 

  16. F. Sterboul, “A Characterization ofGraphs inWhich the TransversalNumber Equals theMatching Number,” J.Combin. Theory Ser. B 27 (2), 228–229 (1979).

    Article  MathSciNet  Google Scholar 

  17. D. B. Mokeev, “On König Graphs with Respect to P4,” Diskretn. Anal. Issled. Oper. 24 (3), 61–79 (2017) [J. Appl. Indust. Math. 11 (3), 421–430 (2017)].

    MathSciNet  MATH  Google Scholar 

  18. G. Ding, Z. Xu, and W. Zang, “Packing Cycles in Graphs, II,” J. Combin. Theory Ser. B 87 (2), 244–253 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Diestel, Graph Theory (Springer, Heidelberg, 2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. S. Malyshev or D. B. Mokeev.

Additional information

Russian Text © D.S. Malyshev, D.B. Mokeev, 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 1, pp. 74–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, D.S., Mokeev, D.B. König Graphs with Respect to the 4-Path and Its Spanning Supergraphs. J. Appl. Ind. Math. 13, 85–92 (2019). https://doi.org/10.1134/S1990478919010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919010101

Keywords

Navigation