Skip to main content
Log in

On the Number and Arrangement of Sensors for the Multiple Covering of Bounded Plane Domains

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We propose a method for determining the number of sensors, their arrangement, and approximate lower bounds for the number of sensors for the multiple covering of an arbitrary closed bounded convex area in a plane. The problem of multiple covering is considered with restrictions on the minimal possible distances between the sensors and without such restrictions. To solve these problems, some 0–1 linear programming (LP) problems are constructed.We use a heuristic solution algorithm for 0–1 LP problems of higher dimensions. The results of numerical implementation are given and for some particular cases it is obtained that the number of sensors found can not be decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. T. A. Aldyn-Ool, A. I. Erzin, and V. V. Zalyubovskiy, “The Coverage of a Planar Region with Randomly Deployed Sensors,” Vestnik NGU, Ser.Mat. Mekh. Inform. 10 (4), 7–25 (2010).

    MATH  Google Scholar 

  2. S. N. Astrakov and A. I. Erzin, “Construction of Efficient Covering Models in the Monitoring of Extended Objects,” Vychisl. Tekhnol. 17 (1), 26–34 (2012).

    Google Scholar 

  3. H. M. Ammari, Challenges and Opportunities of Connected k-Covered Wireless Sensor Networks: From Sensor Deployment to Data Gathering (Springer, Heidelberg, 2009).

    Book  MATH  Google Scholar 

  4. T. Andersen and S. Tirthapura, “Wireless Sensor Deployment for 3D Coverage with Constraints,” in Proceedings of 6th International Conference on Networked Sensing Systems (Pittsburgh, USA, June 17–19, 2009) (IEEE, Piscataway, 2009), pp. 78–81.

    Google Scholar 

  5. S. N. Astrakov, “Coverings of Sets with Restrictions on the Arrangement of Circles,” in Optimization and Applications: Proceedings of VIII International Conference on Optimization Methods and Applications OPTIMA-2017 (Petrovac, Montenegro, October 2–7, 2017) (CEUR Workshop Proc., Vol. 1987), pp. 67–72 [Available at http://ceur-ws.org/Vol-1987 (accessed November 15, 2018)].

    Google Scholar 

  6. N. A. A. Aziz, K. A. Aziz, and W. Z.W. ‘Ismail, “Coverage Strategies forWireless Sensor Networks,” Intern. J. Electron. Commun. Eng. 3 (2), 145–159 (2009).

    Google Scholar 

  7. A. I. Erzin and S. N. Astrakov, “Min-Density Stripe Covering and Applications in Sensor Networks,” in Computational Science and Its Applications—ICCSA 2011: Proceedings of 2011International Conference on Computer Sciences and Its Application (Santander, Spain, June 20–23, 2011), Vol. III (Springer, Heidelberg, 2011), pp. 152–162.

    Google Scholar 

  8. A. Hawbani, X. F. Wang, N. Husaini, and S. Karmoshi, “Grid Coverage Algorithm & Analysis for Wireless Sensor Networks,” Netw. Protocols Algorithms 6 (4), 65–81 (2014).

    Google Scholar 

  9. D. S. Hochbaum and W. Maass, “Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI,” J. ACM32 (1), 130–136 (1985).

    Google Scholar 

  10. C. F. Huang and Y. C. Tseng, “A Survey of Solutions to the Coverage Problems in Wireless Sensor Networks,” J. Internet Technol. 6 (1), 1–8 (2005).

    Google Scholar 

  11. J. E. Kim, J. Han, and C. G. Lee, “Optimal 3-Coverage with Minimum Separation Requirements for Ubiquitous Computing Environments,” Mobile Netw. Appl. 556–570 (2009).

    Google Scholar 

  12. S. Kumar, T. H. Lai, and J. Balogh, “On k-Coverage in a Mostly Sleeping Sensor Network,” in Proceedings of 10th Annual International Conference on Mobile Computer Networks, ACM MobiCom 2004 (ACM, New York, 2004), pp. 144–158.

    Google Scholar 

  13. T. Tabirca, L. T. Yang, and S. Tabirca, “Smallest Number of Sensors for k-Covering,” Internat. J. Comput. Commun. Control 8 (2), 312–319 (2013).

    Article  Google Scholar 

  14. B. Wang, “Coverage Problems in Sensor Networks: A Survey,” J. ACM Comput. Surveys 43 (4), 167–170 (2011).

    Google Scholar 

  15. S. Yang, F. Dai, M. Cardei, J. Wu, and F. Patterson, “On Connected Multiple Point Coverage in Wireless Sensor Networks,” Intern. J. Wireless Inform.Netw. 13 (4), 289–301 (2006).

    Article  Google Scholar 

  16. N. Yeasmin, “k-Coverage Problems and Solutions in Wireless Sensor Networks: A Survey,” Internat. J. Comput. Appl. 100 (17), 1–6 (2014).

    Google Scholar 

  17. V. S. Brusov and S. A. Piyavskii, “A Computational Algorithm for Optimally Covering a Plane Region,” Zh. Vychisl. Mat. Mat. Fiz. 11 (2), 304–312 (1971) [USSR Comput.Math. Math. Phys. 11 (2), 17–27 (1971)].

    Google Scholar 

  18. G. Fejes Tóth, “Multiple Packing and Covering of the Plane with Circles,” Acta Math. Acad. Sci. Hungar. 27 (1–2), 135–140 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Fejes Tóth, “Thinnest Covering of a Circle by Eight, Nine, or Ten Congruent Circles,” in Combinatorial and Computational Geometry (Cambridge Univ. Press, New York, 2005), pp. 361–376.

    MATH  Google Scholar 

  20. A. Heppes and H. Melissen, “Covering a Rectangle with Equal Circles,” Period. Math. Hungar. 34 (1–2), 65–81 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Krotoszyčski, “Covering a Disk with Smaller Disks,” Studia Sci. Math. Hungar. 28 (3–4), 277–283 (1993).

    MathSciNet  Google Scholar 

  22. H. Melissen, “Loosest Circle Coverings of an Equilateral Triangle,” Math. Mag. 70 (2), 118–124 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. B. M. Melissen and P. C. Schuur, “Improved Coverings of a Square with Six and Eight Equal Circles,” Electron. J. Combin. 3 (1/R32), 1–10 (1996) [Available at http://www.combinatorics.org/ojs/index.php/ eljc/article/view/v3i1r32 (accessed November 20, 2018)].

    Google Scholar 

  24. J. B. M. Melissen and P. C. Schuur, “Covering a Rectangle with Six and Seven Circles,” Discrete Appl. Math. 99 (1–3), 149–156 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. J. Nurmela, Covering a Circle by Congruent Circular Discs, Preprint. Department of Computer Sciences and Engineering (Helsinki Univ. Technol., Helsinki, 1998).

    Google Scholar 

  26. K. J. Nurmela, “Conjecturally Optimal Coverings of an Equilateral Triangle with Up To 36Equal Circles,” Exp. Math. 9 (2), 241–250 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. J. Nurmela and P. R. J. Östergård, “Covering a Square with up to 30Equal Circles,”Res.Rep. 62 (Helsinki Univ. Technol.,Helsinki, Finland, 2000) [see http://www.tcs.hut.fi/old/reports /A62abstract.html (accessed November 20, 2018)].

    Google Scholar 

  28. A. Suzuki and Z. Drezner, “The Minimum Number Equitable Radius Location Problems with Continuous Demand,” European J. Oper. Res. 195 (1), 17–30 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Tarnai and Zs. Gáspár, “Covering a Square by Equal Circles, Elem.Math. 50, 167–170 (1995).

    Google Scholar 

  30. Sh. I. Galiev and M. A. Karpova, “Optimization of Multiple Covering of a Bounded Set with Circles,” Zh. Vychisl.Mat. Mat. Fiz. 50 (4), 757–769 (2010) [Comput.Math. Math. Phys. 50 (4), 721–732 (2010)].

    MathSciNet  MATH  Google Scholar 

  31. Sh. I. Galiev and A. V. Khorkov, “Multiple Circle Coverings of an Equilateral Triangle, Square, and Circle,” Diskretn. Anal. Issled. Oper. 22 (6), 5–28 (2015).

    MathSciNet  MATH  Google Scholar 

  32. A.V. Eremeev, L. A. Zaozerskaya, and A. A. Kolokolov, “The Set Covering Problem: Complexity,Algorithms, and Experimental Investigations,” Diskretn. Anal. Issled. Oper. Ser. 2, 7 (2), 22–46 (2000).

    MathSciNet  MATH  Google Scholar 

  33. N. N. Kuzyurin, “On the Complexity of Asymptotically Optimal Coverings and Packing,” Dokl. Akad. Nauk 363 (1), 11–13 (1998) [Dokl.Math. 58 (3), 345–346 (1998)].

    MathSciNet  MATH  Google Scholar 

  34. M. Yu. Khachai and M. I. Poberii, “Computational Complexity and Approximability of a Series of Geometric Covering Problems,” Trudy Inst. Mat. Mekh. 18, No. 3, 247–260, 2012 [Proc. Steklov Inst. Math. 284 (Suppl. 1), S87–S95 (2014)].

    Google Scholar 

  35. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir,Moscow, 1982).

    MATH  Google Scholar 

  36. N. Megiddo and K. J. Supowit, “On the Complexity of Some Common Geometric Location Problems,” SIAM J. Comput. 13 (1), 182–196 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  37. I. Kh. Sigal and A. P. Ivanova, Introduction to Applied Discrete Programming: Models and Computational Algorithm (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  38. Sh. I. Galiev and M. S. Lisafina, “Linear Models for the Approximate Solution of the Problem of Packing Equal Circles into a Given Domain,” European J. Oper. Res. 230, 505–514 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Bertsimas and R. Vohra, “Rounding Algorithms for Covering Problems,” Math. Program. 80 (1), 63–89 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Caprara, M. Fischetti, and P. Tóth, “AHeuristicMethod for the Set Covering Problem,” Oper. Res. 47 (5), 730–743 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  41. N. G. Hall and D. S. Hochbaum, “A Fast Approximation Algorithm for the Multicovering Problem,” Discrete Appl.Math. 15 (1), 35–40 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Umetani and M. Yagiura, “Relaxation Heuristics for the Set Covering Problem,” J. Oper. Res. Soc. Japan 50 (4), 350–375 (2007).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh. I. Galiev or A. V. Khorkov.

Additional information

Russian Text © Sh.I. Galiev, A.V. Khorkov, 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 1, pp. 33–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, S.I., Khorkov, A.V. On the Number and Arrangement of Sensors for the Multiple Covering of Bounded Plane Domains. J. Appl. Ind. Math. 13, 43–53 (2019). https://doi.org/10.1134/S199047891901006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891901006X

Keywords

Navigation