Skip to main content
Log in

Stability Aspects of Multicriteria Integer Linear Programming Problems

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under consideration are the multicriteria integer linear programming problems with finitely many feasible solutions. The problem itself consists in finding a set of extremal solutions. We derive some lower and upper bounds for the T1-stability radius under assumption that arbitrary Hölder norms are given in the solution and criteria spaces. A class of the problems with an infinitely large stability radius is specified. We also consider the case of the multicriteria linear Boolean problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. E. N. Gordeev, “Comparison of Three Approaches to Studying Stability of Solutions to Problems of Discrete Optimization and Computational Geometry,” Diskretn. Anal. Issled. Oper. 22 (3), 18–35 (2015) [J. Appl. Indust. Math. 9 (3), 358–366 (2015)].

    MATH  Google Scholar 

  2. V. A. Emelichev and K. G. Kuzmin, “On a Type of Stability of a Multicriteria Integer Linear Programming Problem in the Case of a Monotone Norm, Izv. Ross. Akad. Nauk Teor. Sist. Upravl. No. 5, 45–51 (2007) [J. Comput. Syst. Sci. Int. 46 (5), 714–720 (2007)].

    Google Scholar 

  3. V. A. Emelichev and K. G. Kuzmin, “A General Approach to Studying the Stability of a Pareto Optimal Solutions of a Vector Integer Linear Programming Problem,” Diskretn.Mat. 19 (3), 79–83 (2007) [Discrete Math. Appl. 17 (4), 349–354 (2007)].

    Article  MATH  Google Scholar 

  4. V. A. Emelichev and K. G. Kuzmin, “Stability Radius of a Vector Integer Linear Programming Problem: Case of a Regular Norm in the Space of Criteria,” Kibernet. Sist. Anal. No. 1, 82–89 (2010) [Cybernet. Syst. Anal. 46 (1), 72–79 (2010)].

    MathSciNet  MATH  Google Scholar 

  5. V. A. Emelichev and K. G. Kuzmin, “On the T1-Stability Radius of a Multicriteria Linear Boolean Problem with Hölder Norms in Parameter Spaces,” Tavricheskiy VestnikMat. Inform. 30 (1), 49–64 (2016).

    Google Scholar 

  6. V. A. Emelichev and D. P. Podkopaev, “Stability and Regularization of Vector Integer Programming Problems,” Diskretn. Anal. Issled. Oper. Ser. 2, 8 (1), 47–69 (2001).

    MathSciNet  MATH  Google Scholar 

  7. V. A. Emelichev and D. P. Podkopaev, “Quantitative Stability Analysis for Vector Problems of 0–1Programming,” Discrete Optim. 7 (1–2), 48–63 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. E. Bukhtoyarov and V. A. Emelichev, “On the Stability Measure of Solutions to a Vector Variant of an Investment Problem,” Diskretn. Anal. Issled. Oper. 22 (2), 5–16 (2015) [J. Appl. Indust. Math. 9 (3), 328–334 (2015)].

    MathSciNet  MATH  Google Scholar 

  9. V. A. Emelichev and V. V. Korotkov, “On Stability of a Vector Boolean Investment Problem with Wald’s Criteria,” Diskretn.Mat. 24 (3), 3–16 (2012) [DiscreteMath. Appl. 22 (4), 367–381 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  10. V. A. Emelichev, V. M. Kotov, K. G. Kuzmin, T. T. Lebedeva, N. V. Semenova, and T. I. Sergienko, “Stability and Effective Algorithms for Solving Multiobjective Discrete Optimization Problems with Incomplete Information,” Problemy Upravlen. Teor. Inform. No. 1, 53–67 (2014) [J. Autom. Inform. Sci. 46 (2), 27–41 (2014)].

    Google Scholar 

  11. V. A. Emelichev and K. G. Kuzmin, “Stability Analysis of the Effective Solution to the Vector Problemon the Maximal Cut of a Graph,” Diskretn. Anal. Issled. Oper. 20 (4), 27–35 (2013).

    MathSciNet  Google Scholar 

  12. K. G. Kuzmin, “A General Approach to the Calculation of Stability Radii for the Max-Cut Problem with Multiple Criteria,” Diskretn. Anal. Issled. Oper. 22 (5), 30–51 (2015) [J. Appl. Indust.Math. 9 (4), 527–539 (2015)].

    Google Scholar 

  13. V. A. Emelichev, S. E. Bukhtoyarov, and V. I. Mychkov, “An Investment Problem under Multicriteriality, Uncertainty, and Risk,” Bul. Acad. Stiinte Repub. Mold.Mat. No. 3, 82–98 (2016).

    MathSciNet  MATH  Google Scholar 

  14. M. A. Aizerman and F. T. Alekserov, The Alternative Choice: Theoretical Foundations (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  15. A. V. Lotov and I. I. Pospelova, Multicriteria Decision-Making Problems (MAKS Press, Moscow, 2008) [in Russian].

    Google Scholar 

  16. V. V. Podinovskii and V. D. Nogin, Pareto-Optimal Solutions to Multicriteria Problems (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  17. L. A. Sholomov, Logical Methods for Studying the Discrete Choice Models (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  18. D. B. Yudin, Computational Methods in Decision-Making Theory (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  19. I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems: Problems, Solution Methods, and Research (Naukova Dumka, Kiev, 2003) [in Russian].

    Google Scholar 

  20. V. K. Leontiev, “Stability in Linear Discrete Problems,” in Problems of Cybernetics, Vol. 35 (Nauka, Moscow, 1979), pp. 169–184.

    Google Scholar 

  21. S. E. Bukhtoyarov and V. A. Emelichev, “On a Stability Type of an Integer Linear Programming Problemwith SeveralCriteria,” in Proceedings. 8th International Conference “Tanaevskie Chteniya,” Minsk, Belarus, March 27–30, 2018 (OIPI Nats. Akad. Nauk Belarusi,Minsk, 2018), pp. 48–51.

    Google Scholar 

  22. V. A. Emelichev, E. Girlich, Yu. V. Nikulin and D. P. Podkopaev, “Stability and Regularization of Vector Problem of Integer Linear Programming,” Optimization 51 (4), 645–676 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Emelichev.

Additional information

Russian Text © S. E. Bukhtoyarov, V. A. Emelichev, 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 1, pp. 5–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhtoyarov, S.E., Emelichev, V.A. Stability Aspects of Multicriteria Integer Linear Programming Problems. J. Appl. Ind. Math. 13, 22–29 (2019). https://doi.org/10.1134/S1990478919010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919010034

Keywords

Navigation