Skip to main content
Log in

Abstract

We consider binomial functions over a finite field of order 2n. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that 2n − 1 is prime. Permutation binomial functions are constructed in the case when n is composite and found for n ≥ 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced Encryption Standard (Springer, Heidelberg, 2002).

    Book  MATH  Google Scholar 

  2. A. A. Gorodilova, “From Cryptanalysis to Cryptographic Property of a Boolean Function,” Prikl. Diskretn. Mat. 33 (3), 16–44 (2016).

    Article  MathSciNet  Google Scholar 

  3. N. N. Tokareva, Bent Functions: Results and Applications to Cryptography (Acad. Press, London, 2015).

    Book  MATH  Google Scholar 

  4. M. M. Glukhov, “On the Approximation of Discrete Functions by Linear Functions,” Mat. Voprosy Kriptogr. 7 (4), 29–50 (2016).

    Article  MathSciNet  Google Scholar 

  5. V. N. Sachkov, “Combinatorial Properties of Differentially 2-UniformSubstitutions,” Mat. Voprosy Kriptogr. 6 (1), 159–179 (2015).

    Article  MathSciNet  Google Scholar 

  6. C. J. Shallue, Permutation Polynomials of Finite Fields (Honours project,Monash University, 2012).

    Google Scholar 

  7. L. Budaghyan, Construction and Analysis of Cryptographic Functions (Springer, Berlin, 2015).

    MATH  Google Scholar 

  8. N. N. Tokareva, Symmetric Cryptography: A Brief Course (Novosib. Gos. Univ., Novosibirsk, 2012) [in Russian].

    Google Scholar 

  9. A. Canteaut, P. Charpin, and G. Kyureghyan, “A New Class of Monomial Bent Functions,” Finite Fields Appl. 14 (1), 221–241 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Daemen and V. Rijmen, AES Proposal: Rijndael (Belgium, 1999).

    MATH  Google Scholar 

  11. H. Dobbertin and G. Leander, “A Survey of Some Recent Results on Bent Functions,” in Sequences and Their Applications—SETA 2004 (Revised Selected Papers of the 3rd International Conference, Seoul, Korea, October 24–28, 2004) (Springer, Heidelberg, 2005), pp. 1–29.

    Google Scholar 

  12. H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felkea, and P. Gaborit, “Construction of Bent Functions via Niho Power Functions,” J. Combin. Theory Ser. A, 113 (5), 779–798 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Yang, Q. Meng, and H. Zhang, “Evolutionary Design of Trace Form Bent Functions,” (Cryptol. ePrint Arch., Rep. 2005/322, 2005), see https://eprint. iacr. org/2005/322.

    Google Scholar 

  14. C. Bracken, E. Byrne, N. Markin, and G. McGuire, “Fourier Spectra of Binomial APN Functions,” SIAM J. DiscreteMath. 23 (2), 596–608 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. E. Tuzhilin, “APN-Functions,” Prikl. Diskretn. Mat. 5 (3), 14–20 (2009).

    Google Scholar 

  16. M. Ayad, K. Belghaba, and O. Kihel, “On Permutation Binomials over Finite Fields,” Bull. Austral. Math. Soc. 89 (1), 112–124 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. M. Masuda and M. E. Zieve, “Permutation Binomials over Finite Fields,” Trans. Amer. Math. Soc. 361 (8), 4169–4180 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Nyberg, “Differentially Uniform Mappings for Cryptography,” in Advances in Cryptology—EUROCRYPT’ 93 (Proceedings of Workshop on Theory and Application of Cryptographic Techniques, Lofthus, Norway, May 23–27, 1993) (Springer, Heidelberg, 1994), pp. 55–64.

    Google Scholar 

  19. C. Carlet, “Vectorial Boolean Functions for Cryptography,” in Boolean Models and Methods in Mathematics, Computer Science, and Engineering (Cambridge Univ. Press, New York, 2010), pp. 398–472.

    Chapter  Google Scholar 

  20. C. Carlet, “Boolean Functions for Cryptography and Error-Correcting Codes,” in Boolean Models and Methods in Mathematics, Computer Science, and Engineering (Cambridge Univ. Press, New York, 2010), pp. 257–397.

    Chapter  Google Scholar 

  21. H. Dobbertin, “Almost Perfect Nonlinear Power Functions on F2n: TheWelch Case,” IEEE Trans. Inform. Theory 45 (4), 1271–1275 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Budaghyan, C. Carlet, and G. Leander, “Constructing New APN Functions from Known Ones,” Finite Fields Appl. 15 (2), 150–159 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Budaghyan, C. Carlet, and G. Leander, “Another Class of Quadratic APN Binomials over F2n: TheCase n Divisible by 4,” in Proceedings of International Workshop on Coding Cryptography, Versailles, France, April 16–20, 2007 (INRIA, Rocquencourt, 2007), pp. 49–58.

    Google Scholar 

  24. L. Budaghyan, C. Carlet, P. Felke, and G. Leander, “An Infinite Class of Quadratic APN Functions Which Are Not Equivalent to Power Mappings,” in Proceedings of 17th IEEE International Symposium on Informatics Theory, Seattle, USA, July 9–14 (IEEE, Piscataway, 2006), pp. 2637–2641.

    Google Scholar 

  25. H. Niederreiter and K. H. Robinson, “Complete Mappings of Finite Fields,” J. Austral. Math. Soc. 33, No. 2, 197–212 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Turnwald, “Permutation Polynomials of Binomial Type,” in Contributions to General Algebra, Vol. 6 (Hölder–Pichler–Tempsky,Vienna, 1988), pp. 281–286.

    Google Scholar 

  27. X. Hou, “Permutation Polynomials over Finite Fields—A Survey of Recent Advances,” Finite Fields Their Appl. 32, 82–119 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Seroussi, “Table of Low-Weight Binary Irreducible Polynomials,” Tech. Rep. HPL–98–135 (Hewlett-Packard, 1998).

    Google Scholar 

  29. C. Carlet, “On the Algebraic Immunities and Higher Order Nonlinearities of Vectorial Boolean Functions,” in Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes (Proceedings of NATO Advance Research Workshop ACPTECC, Veliko Tarnovo, Bulgaria, October 6–9, 2008) (IOS Press, Amsterdam, 2009), pp. 104–116.

    Google Scholar 

  30. D. P. Pokrasenko, “On the Maximal Component Algebraic Immunity of Vectorial Boolean Functions,” Diskretn. Anal. Issled. Oper. 23 (2), 88–99 (2016) [J. Appl. Indust. Math. 10 (2), 257–263 (2016)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Miloserdov.

Additional information

Original Russian Text © A.V. Miloserdov, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 4, pp. 59–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloserdov, A.V. Permutation Binomial Functions over Finite Fields. J. Appl. Ind. Math. 12, 694–705 (2018). https://doi.org/10.1134/S1990478918040105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478918040105

Keywords

Navigation