Skip to main content
Log in

Abstract

The transmission of a vertex v in a graph is the sum of the distances from v to all other vertices of the graph. In a transmission irregular graph, the transmissions of all vertices are pairwise distinct. It is known that almost all graphs are not transmission irregular. Some infinite family of transmission irregular trees was constructed by Alizadeh and Klavžar [Appl.Math. Comput. 328, 113–118 (2018)] and the following problemwas formulated: Is there an infinite family of 2-connected graphs with the property? In this article, we construct an infinite family of 2-connected transmission irregular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Quantitative Graph Theory: Mathematical Foundations and Applications, Ed. by M. Dehmer and F. Emmert-Streib (CRC Press, Boca Raton, 2014).

    MATH  Google Scholar 

  2. Distance inMolecular Graphs—Theory, Ed. by I. Gutman and B. Furtula (Univ. Kragujevac, Kragujevac, Serbia, 2012).

  3. Distance in Molecular Graphs—Applications, Ed. by I. Gutman and B. Furtula (Univ. Kragujevac, Kragujevac, Serbia, 2012).

    Google Scholar 

  4. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Heidelberg, 1986).

    Book  MATH  Google Scholar 

  5. N. Trinajstić, Chemical Graph Theory (CRC Press, Boca Raton, 1983).

    Google Scholar 

  6. A. A. Dobrynin, R. Entringer, and I. Gutman, “Wiener Index for Trees: Theory and Applications,” Acta Appl. Math. 66 (3), 211–249 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Dobrynin, I. Gutman, S. Klavžar, and P. Zˇ igert, “Wiener Index of Hexagonal Systems,” Acta Appl. Math. 72 (3), 247–294 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. A. Dobrynin and L. S. Mel’nikov, “Wiener Index of Line Graphs,” in Distance in Molecular Graphs— Theory, Ed. by I Gutman and B. Furtula (Univ. Kragujevac, Kragujevac, Serbia, 2012), pp. 85–121.

    Google Scholar 

  9. R. C. Entringer, “Distance in Graphs: Trees,” J. Combin. Math. Combin. Comput. 24, 65–84 (1997).

    MathSciNet  MATH  Google Scholar 

  10. R. C. Entringer, D. E. Jackson, and D. A. Snyder, “Distance inGraphs,” Czechoslovak Math. J. 26, 283–296 (1976).

    MathSciNet  MATH  Google Scholar 

  11. M. Knor and R. Škrekovski, “Wiener Index of LineGraphs,” in Quantitative Graph Theory:Mathematical Foundations and Applications (CRC Press, Boca Raton, 2014), pp. 279–301.

    Chapter  Google Scholar 

  12. M. Knor, R. Škrekovski, and A. Tepeh, “Mathematical Aspects ofWiener Index,” ArsMath. Contemp. 11 (2), 327–352 (2016).

    MATH  Google Scholar 

  13. J. Plesnik, “On the Sum of All Distances in a Graph or Digraph,” J. Graph Theory 8, 1–21 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Bonchev, “Shannon’s Information and Complexity,” in Complexity in Chemistry: Introduction and Fundamentals (Taylor & Francis, London, 2003), pp. 155–187.

    Google Scholar 

  15. K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, M. Kovše, and A. R. Subhamathi, “ComputingMedian and Antimedian Sets inMedian Graphs,” Algorithmica 57, 207–216 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Knor and R. Škrekovski, “Centralization of Transmission in Networks,” DiscreteMath. 338, 2412–2420 (2015).

    MathSciNet  MATH  Google Scholar 

  17. C. Smart and P. J. Slater, “Center,Median, and Centroid Subgraphs,” Networks 34, 303–311 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Abiad, B. Brimkov, B. Erey, L. Leshock, X. Martinez-Rivera, S. O. S.-Y. Song, and J. Williford, “On the Wiener Index, Distance Cospectrality and Transmission-Regular Graphs,” Discrete Appl. Math. 230, 1–10 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Alizadeh, V. Andova, S. Klavžar, and R. Škrekovski, “Wiener Dimension: Fundamental Properties and (5, 0)-Nanotubical Fullerenes,” MATCH Commun. Math. Comput. Chem. 72, 279–294 (2014).

    MathSciNet  MATH  Google Scholar 

  20. Y. Alizadeh and S. Klavžar, “Complexity of Topological Indices: The Case of Connective Eccentric Index,” MATCH Commun. Math. Comput. Chem. 76, 659–667 (2016).

    MathSciNet  MATH  Google Scholar 

  21. Y. Alizadeh and S. Klavžar, “On GraphsWhoseWiener Complexity Equals Their Order and onWiener Index of Asymmetric Graphs,” Appl. Math. Comput. 328, 113–118 (2018).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dobrynin.

Additional information

Original Russian Text © A.A. Dobrynin, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 4, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrynin, A.A. On 2-Connected Transmission Irregular Graphs. J. Appl. Ind. Math. 12, 642–647 (2018). https://doi.org/10.1134/S199047891804004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891804004X

Keywords

Navigation