Skip to main content
Log in

Minimizing a Symmetric Quasiconvex Function on a Two-Dimensional Lattice

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider the minimization problem for a symmetric quasiconvex function defined by an oracle on the set of integer points of a square. We formulate an optimality criterion for the solution, obtain a logarithmic lower bound for the complexity of the problem, and propose an algorithm for which the number of inquiries to the oracle is at most thrice the lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. Yu. Chirkov, “Minimization of Quasiconvex Function on Two-Dimensional Integer Lattice,” Vestnik Nizhegorod. Univ. N. I. Lobachevskogo, Mat. Model. Optim. Upravl. No. 1, 227–238 (2003).

    Google Scholar 

  2. N. Yu. Zolotykh and A. Yu. Chirkov, “A Lower Bound for Complexity of Minimization of Quasi-Convex Function on Integer Lattice,” Vestnik Nizhegorod. Univ. N. I. Lobachevskogo No. 5 (2), 93–96 (2012).

    Google Scholar 

  3. A. Basu and T. Oertel, “Centerpoints:A Link BetweenOptimization andConvexGeometry,” SIAM J.Optim. 27 (2), 866–889 (2017).

    Article  MathSciNet  Google Scholar 

  4. T. Oertel, Integer ConvexMinimization in Low Dimensions, PhD Dissertation (Eidgenössische Technische Hochschule, Zurich, 2014).

    Google Scholar 

  5. T. Oertel, C. Wagner, and R. Weismantel, “Integer ConvexMinimization byMixed Integer Linear Optimization,” Oper. Res. Lett. 42 (6), 424–428 (2014).

    Article  MathSciNet  Google Scholar 

  6. S. Heinz, “Complexity of Integer Quasiconvex Polynomial Optimization,” J. Complexity 21 (4), 543–556 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Hildebrand and M. Köppe, “A New Lenstra-Type Algorithm for Quasiconvex Polynomial Integer Minimization with Complexity 2O(n log n),” Discrete Optim. 10 (1), 69–84 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Heinz, “Quasiconvex Functions Can Be Approximated by Quasiconvex Polynomials,” ESAIM, Control Optim. Calc. Var. 14 (4), 795–801 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. M. Vinogradov, Elements of Number Theory (Lan’,Moscow, 2009; Dover, Mineola, NY, 2016).

    Google Scholar 

  10. A. G. Sukharev, A. V. Timokhov, and V. V. Fyodorov, A Course onOptimizationMethods (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  11. W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming (Springer, New York, 2006).

    MATH  Google Scholar 

  12. M. Avriel and D. J. Wilde, “Optimality Proof for the Symmetric Fibonacci Search Technique,” Fibonacci Q. 4 (3), 265–269 (1966).

    MathSciNet  MATH  Google Scholar 

  13. J. Kiefer, “Sequential Minimax Search for aMaximum,” Proc. AMS 4 (3), 502–506 (1953).

    Article  MATH  Google Scholar 

  14. A. Schrijver, Theory of Linear and Integer Programming (JohnWiley & Sons, Chichester, GB, 1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Veselov.

Additional information

Original Russian Text © S.I. Veselov, D.V. Gribanov, N.Yu. Zolotykh, A.Yu. Chirkov, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 3, pp. 23–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselov, S.I., Gribanov, D.B., Zolotykh, N.Y. et al. Minimizing a Symmetric Quasiconvex Function on a Two-Dimensional Lattice. J. Appl. Ind. Math. 12, 587–594 (2018). https://doi.org/10.1134/S199047891803016X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891803016X

Keywords

Navigation