Abstract
We consider the minimization problem for a symmetric quasiconvex function defined by an oracle on the set of integer points of a square. We formulate an optimality criterion for the solution, obtain a logarithmic lower bound for the complexity of the problem, and propose an algorithm for which the number of inquiries to the oracle is at most thrice the lower bound.
References
A. Yu. Chirkov, “Minimization of Quasiconvex Function on Two-Dimensional Integer Lattice,” Vestnik Nizhegorod. Univ. N. I. Lobachevskogo, Mat. Model. Optim. Upravl. No. 1, 227–238 (2003).
N. Yu. Zolotykh and A. Yu. Chirkov, “A Lower Bound for Complexity of Minimization of Quasi-Convex Function on Integer Lattice,” Vestnik Nizhegorod. Univ. N. I. Lobachevskogo No. 5 (2), 93–96 (2012).
A. Basu and T. Oertel, “Centerpoints:A Link BetweenOptimization andConvexGeometry,” SIAM J.Optim. 27 (2), 866–889 (2017).
T. Oertel, Integer ConvexMinimization in Low Dimensions, PhD Dissertation (Eidgenössische Technische Hochschule, Zurich, 2014).
T. Oertel, C. Wagner, and R. Weismantel, “Integer ConvexMinimization byMixed Integer Linear Optimization,” Oper. Res. Lett. 42 (6), 424–428 (2014).
S. Heinz, “Complexity of Integer Quasiconvex Polynomial Optimization,” J. Complexity 21 (4), 543–556 (2005).
R. Hildebrand and M. Köppe, “A New Lenstra-Type Algorithm for Quasiconvex Polynomial Integer Minimization with Complexity 2O(n log n),” Discrete Optim. 10 (1), 69–84 (2013).
S. Heinz, “Quasiconvex Functions Can Be Approximated by Quasiconvex Polynomials,” ESAIM, Control Optim. Calc. Var. 14 (4), 795–801 (2008).
I. M. Vinogradov, Elements of Number Theory (Lan’,Moscow, 2009; Dover, Mineola, NY, 2016).
A. G. Sukharev, A. V. Timokhov, and V. V. Fyodorov, A Course onOptimizationMethods (Nauka, Moscow, 1986) [in Russian].
W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming (Springer, New York, 2006).
M. Avriel and D. J. Wilde, “Optimality Proof for the Symmetric Fibonacci Search Technique,” Fibonacci Q. 4 (3), 265–269 (1966).
J. Kiefer, “Sequential Minimax Search for aMaximum,” Proc. AMS 4 (3), 502–506 (1953).
A. Schrijver, Theory of Linear and Integer Programming (JohnWiley & Sons, Chichester, GB, 1998).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.I. Veselov, D.V. Gribanov, N.Yu. Zolotykh, A.Yu. Chirkov, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 3, pp. 23–35.
Rights and permissions
About this article
Cite this article
Veselov, S.I., Gribanov, D.B., Zolotykh, N.Y. et al. Minimizing a Symmetric Quasiconvex Function on a Two-Dimensional Lattice. J. Appl. Ind. Math. 12, 587–594 (2018). https://doi.org/10.1134/S199047891803016X
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S199047891803016X