Complexity Estimation for an Algorithm of Searching for Zero of a Piecewise Linear Convex Function

Abstract

It is known that the problem of the orthogonal projection of a point to the standard simplex can be reduced to solution of a scalar equation. In this article, the complexity is analyzed of an algorithm of searching for zero of a piecewise linear convex function which is proposed in [30]. The analysis is carried out of the best and worst cases of the input data for the algorithm. To this end, the largest and smallest numbers of iterations of the algorithm are studied as functions of the size of the input data. It is shown that, in the case of equality of elements of the input set, the algorithm performs the smallest number of iterations. In the case of different elements of the input set, the number of iterations is maximal and depends rather weakly on the particular values of the elements of the set. The results of numerical experiments with random input data of large dimension are presented.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms (Addison-Wesley, Reading, MA, 1983; Izd. domWilliams, Moscow, 2003).

    Google Scholar 

  2. 2.

    A. S. Velichko, “On the Step Choice in Projection Algorithms for Large-Scale Linear Programming Problems,” Dal’nevost. Mat. Zh. 12 (2), 160–170 (2012).

    MathSciNet  MATH  Google Scholar 

  3. 3.

    V. F. Demyanov and G. Sh. Tamasyan, “On Direct Methods for Solving Variational Problems,” Trudy Inst. Mat. Mekh. 16 (5), 36–47 (2010).

    Google Scholar 

  4. 4.

    D. V. Dolgii and E. A. Nurminskii, “An Accelerated Parallel Projection Method for Solving the Minimum Length Problem,” Vychisl. Metody Program. 7 (3), 273–277 (2006).

    Google Scholar 

  5. 5.

    M. V. Dolgopolik and G. Sh. Tamasyan, “On Equivalence of the Method of SteepestDescent and the Method of Hypodifferential Descent in Some ConstrainedOptimization Problems,” Izv. Sarat. Univ. Ser.Mat. Mekh. Inform. 14 (4-2), 532–542 (2014).

    MATH  Google Scholar 

  6. 6.

    V. I. Zorkal’tsev, “Octahedral and Euclidean Projections of a Point to a Linear Manifold,” Trudy Inst. Mat. Mekh. 18 (3), 106–118 (2012) [Proc. Steklov Inst.Math. 284, Suppl. 1, 185–197 (2014)].

    Google Scholar 

  7. 7.

    V. I. Zorkal’tsev, “Projecting a Point to a Polyhedron,” Zh. Vychisl.Mat.Mat. Fiz. 53 (1), 4–19 (2013).

    MATH  Google Scholar 

  8. 8.

    V. N. Malozemov, “MDMmethod—40 years,” Vestnik Syktyvkar. Univ., Ser. 1, No. 15, 51–62 (2012).

    Google Scholar 

  9. 9.

    V. N. Malozemov and A. B. Pevnyi, “Fast Algorithm for Projecting a Point on a Simplex,” Vestnik. St-Peterbg. Univ. Ser. 1, No. 1, 112–113 (1992) [Vestnik St. Petersbg. Univ.Math. 25 (1), 62–63 (1992)].

    MathSciNet  Google Scholar 

  10. 10.

    V. N. Malozemov and G. Sh. Tamasyan, “Two Fast Algorithms for Finding the Projection of a Point onto the Standard Simplex,” Zh. Vychisl.Mat.Mat.Fiz. 56 (5), 742–755 (2016) [Comput.Math.Math. Phys. 56 (5), 730–743 (2016)].

    MATH  Google Scholar 

  11. 11.

    V. N. Malozemov and G. Sh. Tamasyan, “Gibb’s Lemma and Its Applications,” Seminar on Constructive Nonsmooth Analysis and Nondifferentiable Optimization, Selected Talks (St-Peterbg. Gos. Univ., St. Petersburg, 2017) [Available at http://www.apmath.spbu.ru/cnsa/pdf/2017/LemmaGibbsa.pdf (accessed January 3, 2018)].

    Google Scholar 

  12. 12.

    B. F. Mitchell, V. F. Demyanov, and V. N. Malozemov, “Finding Point of Polyhedron Nearest to the Origin,” Vestnik Leningr. Univ. No. 19, 38–45 (1971).

    MATH  Google Scholar 

  13. 13.

    E. A. Nurminski, “A Parallel Method of Projection onto the Convex Hull of a Family of Sets,” Izv. Vyssh. Uchebn. Zaved.Mat. No. 12, 78–82 (2003) [Russ.Math. 47 (12), 74–78 92003)].

    MathSciNet  Google Scholar 

  14. 14.

    E. A. Nurminski, “Projection onto Polyhedra in Outer Representation,” Zh. Vychisl. Mat. Mat. Fiz. 48 (3), 387–396 (2008) [Comput.Math. Math. Phys. 48, No. 3, 367–375 (2008)].

    MathSciNet  Google Scholar 

  15. 15.

    G. Sh. Tamasyan, “Methods of Steepest and Hypodifferential Descent in One Problem of Calculus of Variations,” Vychisl. Metody Program. 13 (1), 197–217 (2012).

    Google Scholar 

  16. 16.

    G. Sh. Tamasyan, “Numerical Methods in Problems of Calculus of Variations for Functionals Depending on Higher Order Derivatives,” in Problems of Mathematical Analysis, Vol. 67 (Tamara Rozhkovskaya, Novosibirsk, 2012), pp. 113–132 [J.Math. Sci. 188 (3), 299–321 (2013)].

    Google Scholar 

  17. 17.

    G. Sh. Tamasyan, E. V. Prosolupov, and T. A. Angelov, “Comparative Study of Two Fast Algorithms for Projecting a Point to the Standard Simplex,” Diskretn. Anal. Issled. Oper. 23 (2), 100–123 (2016) [J. Appl. Indust. Math. 10 (2), 288–301 (2016)].

    MathSciNet  MATH  Google Scholar 

  18. 18.

    G. Sh. Tamasyan and A. A. Chumakov, “Finding the Distance between Ellipsoids,” Diskretn. Anal. Issled. Oper. 21 (3), 87–102 (2014) [J. Appl. Indust.Math. 8 (3), 400–410 (2014)].

    MathSciNet  MATH  Google Scholar 

  19. 19.

    A. Yu. Uteshev and M. V. Yashina, “Computation of the Distance from an Ellipsoid to a Linear Surface and a Quadric in Rn,” Dokl. Akad. Nauk 419 (4), 471–474 (2008) [Dokl.Math. 77 (2), 269–272 (2008)].

    MATH  Google Scholar 

  20. 20.

    P. Brucker, “An O(n) Algorithm for Quadratic Knapsack Problems,” Oper. Res. Lett. 3 (3), 163–166 (1984).

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    A. Causa and F. Raciti, “A PurelyGeometric Approach to the Problem of Computing the Projection of a Point on a Simplex,” J. Optim. Theory Appl. 156 (2), 524–528 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    V. F. Demyanov, “Algorithms for SomeMinimax Problems,” J. Comput. Syst. Sci. 2 (4), 342–380 (1968).

    Article  MATH  Google Scholar 

  23. 23.

    V. F. Demyanov, F. Giannessi, and G. Sh. Tamasyan, “Variational Control Problems with Constraints via Exact Penalization,” in Variational Analysis and Applications (Springer, New York, 2005), pp. 301–342.

    Google Scholar 

  24. 24.

    V. F. Demyanov and G. Sh. Tamasyan, “Exact Penalty Functions in Isoperimetric Problems,” Optimization 60 (1–2), 153–177 (2011).

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    V. F. Demyanov and G. Sh. Tamasyan, “Direct Methods in the Parametric Moving Boundary Variational Problem,” Numer. Funct. Anal. Optim. 35 (7–9), 932–961 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    F. Deutsch, “The Method of Alternating Orthogonal Projections,” in Approximation Theory, Spline Functions and Applications (Kluwer Acad. Publ., Dordrecht, 1992), pp. 105–121.

    Google Scholar 

  27. 27.

    M. V. Dolgopolik and G. Sh. Tamasyan, “Method of Steepest Descent for Two-Dimensional Problems of Calculus of Variations,” in Constructive Nonsmooth Analysis and Related Topics (Springer, New York, 2014), pp. 101–113.

    Google Scholar 

  28. 28.

    M. Held, P. Wolfe, and H. P. Crowder, “Validation of Subgradient Optimization,” Math. Program. 6 (1), 62–88 (1974).

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    R. V. Helgason, J. L. Kennington, and H. Lall, “A Polynomially Bounded Algorithm for a Singly Constrained Quadratic Program,” Math. Program. 18 (1), 338–343 (1980).

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    N. Maculan and G. Galdino de Paula, Jr., “A Linear-Time Median-Finding Algorithm for Projecting a Vector on the Simplex of Rn,” Oper. Res. Lett. 8 (4), 219–222 (1989).

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    C. Michelot, “A Finite Algorithm for Finding the Projection of a Point onto the Canonical Simplex of Rn,” J. Optim. Theory Appl. 50 (1), 195–200 (1986).

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    M. Patriksson, “A Survey on the Continuous Nonlinear Resource Allocation Problem,” European J. Oper. Res. 185 (1), 1–46 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    G. Sh. Tamasyan and A. A. Chumakov, “Finding the Distance between an Ellipsoid and the Intersection of a Linear Manifold and Ellipsoid,” Proceedings of International Conference “Stability and Control Processes” in Memory of V. I. Zubov Joined with 21st International Workshop on Beam Dynamics and Optimization, St. Petersburg, Russia, October 5–9, 2015 (IEEE, Piscataway, 2015), pp. 357–360.

    Google Scholar 

  34. 34.

    G. Sh. Tamasyan and E. V. Prosolupov, “Orthogonal Projection of a Point onto the Standard Simplex Algorithms Analysis,” Proceedings of International Conference “Stability and Control Processes” in Memory of V. I. Zubov, St. Petersburg, Russia, October 5–9, 2015 (IEEE, Piscataway, 2015), pp. 353–356.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Prosolupov.

Additional information

Original Russian Text © E.V. Prosolupov, G.Sh. Tamasyan, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 2, pp. 82–100.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prosolupov, E.V., Tamasyan, G.S. Complexity Estimation for an Algorithm of Searching for Zero of a Piecewise Linear Convex Function. J. Appl. Ind. Math. 12, 325–333 (2018). https://doi.org/10.1134/S1990478918020126

Download citation

Keywords

  • standard simplex
  • orthogonal projection of point
  • zeros of function