Abstract
We estimate the number of monotone discrete functions related to the divisibility of numbers.
References
G. Hansel, “Sur le nombre des fonctions booléennesmonotones de n variables,” C. R. Acad. Sci. Paris Sér. B, 262, 1088–1090 (1966) [in Cybernetic Sbornik. New Series, Vol. 5 (Mir, Moscow, 1968), pp. 53–74].
A. D. Korshunov, “On the Number of Monotone Boolean Functions,” in Problems of Cybernetics, Vol. 38 (Nauka, Moscow, 1981), pp. 5–108.
V. K. Leontiev, Combinatorics and Information, Vol. 1 (Moskov. Fiz.-Tekh. Inst., Moscow, 2015) [in Russian].
K. A. Rybnikov, An Introduction to Combinatorial Analysis (Moskov. Gos. Univ., Moscow, 1985) [in Russian].
R. P. Stanley, Enumerative Combinatorics, Vol. 1 (Wadsworth Brooks/Cole Adv. Books Softw., Monterey, 1986; Mir, Moscow, 1990).
B. Schröder, Ordered Sets: An Introduction with Connections from Combinatorics to Topology (Birkhäuser, Basel, 2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.K. Leont’ev, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 2, pp. 54–61.
Rights and permissions
About this article
Cite this article
Leont’ev, V.K. On a Partial Order Related to Divisibility. J. Appl. Ind. Math. 12, 297–301 (2018). https://doi.org/10.1134/S1990478918020096
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478918020096