Abstract
Letters x and y alternate in a word w if after deleting all letters but x and y in w we get either a word xyxy... or a word yxyx... (each of these words can be of odd or even length). A graph G = (V,E) is word-representable if there is a finite word w over an alphabet V such that the letters x and y alternate in w if and only if xy ∈ E. The word-representable graphs include many important graph classes, in particular, circle graphs, 3-colorable graphs and comparability graphs. In this paper we present the full survey of the available results on the theory of word-representable graphs and the most recent achievements in this field.
References
S. Kitaev and S. Seif, “Word Problem of the Perkins Semigroup via Directed Acyclic Graphs,” Order 25 (3), 177–194 (2008).
P. Perkins, “Bases for Equational Theories of Semigroups,” J. Algebra 11 (2), 298–314 (1969).
S. Kitaev and A. Pyatkin, “On Representable Graphs,” J. Autom. Lang. Comb. 13 (1), 45–54 (2008).
S. Kitaev and V. Lozin, Words and Graphs (Springer, Cham, 2015).
M. Glen, The software available at http://personal.cis.strath.ac.uk/sergey.kitaev/word-representablegraphs.html (accessed Feb. 5, 2017).
J. Černý, “Coloring Circle Graphs,” Electron. Notes DiscreteMath. 29, 457–461 (2007).
R. Beigel and D. Eppstein, “3-Coloring in Time O(1.3289n),” J. Algorithms 54 (2), 168–204 (2005).
L. Lovász, “Perfect Graphs,” in Selected Topics in Graph Theory, Vol. 2 (Acad. Press, London, 1983), pp. 55–87.
R. Graham and N. Zang, “Enumerating Split-Pair Arrangements,” J.Combin. TheorySer. A, 115 (2), 293–303 (2008).
M. Jones, S. Kitaev, A. Pyatkin, and J. Remmel, “Representing Graphs via Pattern Avoiding Words,” Electron. J. Combin. 22 (2), Res. Pap. P2.53, 1–20 (2015).
H. Prüfer, “Neuer Beweis eines Satzes über Permutationen,” Arch. Math. Phys. 27, 742–744 (1918).
V. Chvátal and P. Hammer, “Aggregation of Inequalities in Integer Programming,” in Studies in Integer Programming (North-Holland, Amsterdam, 1977), pp. 145–162.
M. Petkovšek, “LetterGraphs andWell-Quasi-Order by Induced Subgraphs,” DiscreteMath. 244, 375–388 (2002).
N. Korpelainen and V. Lozin, “Two Forbidden Induced Subgraphs and Well-Quasi-Ordering,” Discrete Math. 311 (16), 1813–1822 (2011).
M. Koebe, “On a New Class of Intersection Graphs,” Ann. DiscreteMath. 51, 141–143 (1992).
J. Balogh, B. Bollobás, and D. Weinreich, “A Jump to the Bell Number for Hereditary Graph Properties,” J.Combin. Theory Ser. B 95, 29–48 (2005).
E. J. L. Bell, P. Rayson, and D. Berridge, “The Strong-Connectivity of Word-Representable Digraphs” (Cornell Univ. Libr. e-Print Archive, arXiv:1102.0980, 2011).
C. G. Fernandes, E. L. Green, and A. Mandel, “From Monomials to Words to Graphs,” J. Combin. Theory Ser. A, 105 (2), 185–206 (2004).
R. Diestel, Graph Theory (Springer, Heidelberg, 2016).
D. B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 1996).
J. Berstel and J. Karhumäki, “Combinatorics onWords—A Tutorial,” Bull. EATCS 79, 178–228 (2003).
J. Berstel and D. Perrin, “The Origins of Combinatorics on Words,” European J. Combin. 28 (3), 996–1022 (2007).
A. Collins, S. Kitaev, and V. Lozin, “New Results on Word-Representable Graphs,” Discrete Appl. Math. 216, 136–141 (2017).
S. Kitaev, “On Graphs with Representation Number 3,” J. Autom. Lang. Combin. 18 (2), 97–112 (2013).
P. Akrobotu, S. Kitaev, and Z. Masárová, “On Word-Representability of Polyomino Triangulations,” Siberian Adv. Math. 25 (1), 1–10 (2015).
E. Babson and E. Steingrímsson, “Generalized Permutation Patterns and a Classification of the Mahonian Statistics,” Sémin. Lothar. Combin. 44 (B44b), 1–18 2000.
I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The Maximum Clique Problem,” in Handbook of Combinatorial Optimization, Suppl. Vol. A (Kluwer Acad. Publ., Dordrecht, 1999), pp. 1–74.
M. Bóna, Combinatorics of Permutations (Chapman & Hall/CRC, Boca Raton, FL, 2004).
G. Brightwell, “On the Complexity of Diagram Testing,” Order 10 (4), 297–303 (1993).
P. Brändén and A. Claesson, “Mesh Patterns and the Expansion of Permutation Statistics as Sums of Permutation Patterns,” Electron. J. Combin. 18 (2), Res. Pap. P5, 1–14 (2011).
T. Z. Q. Chen, S. Kitaev, and B. Y. Sun, “Word-Representability of Face Subdivisions of Triangular Grid Graphs,” Graphs Combin. 32 (5), 1749–1761 (2016).
T. Z. Q. Chen, S. Kitaev, and B. Y. Sun, “Word-Representability of Triangulations of Grid-Covered Cylinder Graphs,” Discrete Appl.Math. 213, 60–70 (2016).
A. Claesson, “Generalized Pattern Avoidance,” European J. Combin. 22, 961–971 (2001).
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP Completeness (Freeman, San Francisco, 1979).
A. L. L. Gao, S. Kitaev, and P. B. Zhang, “On 132-Representable Graphs,” Australas. J. Combin. 69 (1), 105–118 (2017).
M. Glen, “Colourability and Word-Representability of Near-Triangulations,” (Cornell Univ. Libr. e-Print Archive, arXiv:1605.01688, 2016).
M. Glen and S. Kitaev, “Word-Representability of Triangulations of Rectangular Polyomino with a Single Domino Tile,” J. Combin.Math. Combin. Comput. 100, 131–144, 2017.
M. Glen, S. Kitaev, and A. Pyatkin, “On theRepresentationNumber of aCrownGraph,” (Cornell Univ. Libr. e-Print Archive, arXiv:1609.00674, 2016).
M. Halldórsson, S. Kitaev, and A. Pyatkin, “Graphs Capturing Alternations in Words,” in Developments in Language Theory (Proceedings of 14th International Conference, London, ON, Canada, Aug. 17–20, 2010) (Springer, Heidelberg, 2010), pp. 436–437.
M. Halldórsson, S. Kitaev, and A. Pyatkin, “Alternation graphs,” in Graph-Theoretic Concepts in Computer Science (Revised Papers of 37th International Workshop, TepláMonastery, Czech Republic, June 21–24, 2011) (Springer, Heidelberg, 2011), pp. 191–202.
M. Halldórsson, S. Kitaev, and A. Pyatkin, “Semi-TransitiveOrientations andWord-RepresentableGraphs,” Discrete Appl. Math. 201, 164–171 (2016).
S. Kitaev, Patterns in Permutations and Words (Springer, Heidelberg, 2011).
S. Kitaev, P. Salimov, C. Severs, and H. Úlfarsson, On the representability of line graphs, in Developments in Language Theory: (Proceedings of 15th International Conference, Milan, Italy, July 19–22, 2010) (Springer, Heidelberg, 2011), pp. 478–479.
A. Marcus and G. Tardos, “Excluded Permutation Matrices and the Stanley–Wilf Conjecture,” J. Combin. Theory Ser. A, 107 (1), 153–160 (2004).
Y. Mandelshtam, “On Graphs Representable by Pattern-Avoiding Words” (Cornell Univ. Libr. e-Print Archive, arXiv:1608.07614) (2016).
O. Pretzel, “On Graphs That Can Be Oriented as Diagrams of Ordered Sets,” Order 2 (1), 25–40 (1985).
E. Steingrímsson, “GeneralizedPermutation Patterns—A Short Survey,” in Permutation Patterns (Camb. Univ. Press, New York, 2010), pp. 137–152.
C. Thomassen, “A Short List Color Proof of Grötzsch’s Theorem,” J. Combin. Theory Ser. B, 88 (1), 189–192 (2003).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.V. Kitaev, A.V. Pyatkin, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 2, pp. 19–53.
Rights and permissions
About this article
Cite this article
Kitaev, S.V., Pyatkin, A.V. Word-Representable Graphs: a Survey. J. Appl. Ind. Math. 12, 278–296 (2018). https://doi.org/10.1134/S1990478918020084
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478918020084