Skip to main content
Log in

Abstract

Letters x and y alternate in a word w if after deleting all letters but x and y in w we get either a word xyxy... or a word yxyx... (each of these words can be of odd or even length). A graph G = (V,E) is word-representable if there is a finite word w over an alphabet V such that the letters x and y alternate in w if and only if xyE. The word-representable graphs include many important graph classes, in particular, circle graphs, 3-colorable graphs and comparability graphs. In this paper we present the full survey of the available results on the theory of word-representable graphs and the most recent achievements in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. Kitaev and S. Seif, “Word Problem of the Perkins Semigroup via Directed Acyclic Graphs,” Order 25 (3), 177–194 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Perkins, “Bases for Equational Theories of Semigroups,” J. Algebra 11 (2), 298–314 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Kitaev and A. Pyatkin, “On Representable Graphs,” J. Autom. Lang. Comb. 13 (1), 45–54 (2008).

    MathSciNet  MATH  Google Scholar 

  4. S. Kitaev and V. Lozin, Words and Graphs (Springer, Cham, 2015).

    Book  MATH  Google Scholar 

  5. M. Glen, The software available at http://personal.cis.strath.ac.uk/sergey.kitaev/word-representablegraphs.html (accessed Feb. 5, 2017).

  6. J. Černý, “Coloring Circle Graphs,” Electron. Notes DiscreteMath. 29, 457–461 (2007).

    Article  MATH  Google Scholar 

  7. R. Beigel and D. Eppstein, “3-Coloring in Time O(1.3289n),” J. Algorithms 54 (2), 168–204 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Lovász, “Perfect Graphs,” in Selected Topics in Graph Theory, Vol. 2 (Acad. Press, London, 1983), pp. 55–87.

    Google Scholar 

  9. R. Graham and N. Zang, “Enumerating Split-Pair Arrangements,” J.Combin. TheorySer. A, 115 (2), 293–303 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Jones, S. Kitaev, A. Pyatkin, and J. Remmel, “Representing Graphs via Pattern Avoiding Words,” Electron. J. Combin. 22 (2), Res. Pap. P2.53, 1–20 (2015).

    MathSciNet  MATH  Google Scholar 

  11. H. Prüfer, “Neuer Beweis eines Satzes über Permutationen,” Arch. Math. Phys. 27, 742–744 (1918).

    MATH  Google Scholar 

  12. V. Chvátal and P. Hammer, “Aggregation of Inequalities in Integer Programming,” in Studies in Integer Programming (North-Holland, Amsterdam, 1977), pp. 145–162.

    Chapter  Google Scholar 

  13. M. Petkovšek, “LetterGraphs andWell-Quasi-Order by Induced Subgraphs,” DiscreteMath. 244, 375–388 (2002).

    MATH  Google Scholar 

  14. N. Korpelainen and V. Lozin, “Two Forbidden Induced Subgraphs and Well-Quasi-Ordering,” Discrete Math. 311 (16), 1813–1822 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Koebe, “On a New Class of Intersection Graphs,” Ann. DiscreteMath. 51, 141–143 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Balogh, B. Bollobás, and D. Weinreich, “A Jump to the Bell Number for Hereditary Graph Properties,” J.Combin. Theory Ser. B 95, 29–48 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. J. L. Bell, P. Rayson, and D. Berridge, “The Strong-Connectivity of Word-Representable Digraphs” (Cornell Univ. Libr. e-Print Archive, arXiv:1102.0980, 2011).

    Google Scholar 

  18. C. G. Fernandes, E. L. Green, and A. Mandel, “From Monomials to Words to Graphs,” J. Combin. Theory Ser. A, 105 (2), 185–206 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Diestel, Graph Theory (Springer, Heidelberg, 2016).

    MATH  Google Scholar 

  20. D. B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 1996).

    MATH  Google Scholar 

  21. J. Berstel and J. Karhumäki, “Combinatorics onWords—A Tutorial,” Bull. EATCS 79, 178–228 (2003).

    MATH  Google Scholar 

  22. J. Berstel and D. Perrin, “The Origins of Combinatorics on Words,” European J. Combin. 28 (3), 996–1022 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Collins, S. Kitaev, and V. Lozin, “New Results on Word-Representable Graphs,” Discrete Appl. Math. 216, 136–141 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Kitaev, “On Graphs with Representation Number 3,” J. Autom. Lang. Combin. 18 (2), 97–112 (2013).

    MathSciNet  MATH  Google Scholar 

  25. P. Akrobotu, S. Kitaev, and Z. Masárová, “On Word-Representability of Polyomino Triangulations,” Siberian Adv. Math. 25 (1), 1–10 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Babson and E. Steingrímsson, “Generalized Permutation Patterns and a Classification of the Mahonian Statistics,” Sémin. Lothar. Combin. 44 (B44b), 1–18 2000.

    MathSciNet  MATH  Google Scholar 

  27. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The Maximum Clique Problem,” in Handbook of Combinatorial Optimization, Suppl. Vol. A (Kluwer Acad. Publ., Dordrecht, 1999), pp. 1–74.

    Google Scholar 

  28. M. Bóna, Combinatorics of Permutations (Chapman & Hall/CRC, Boca Raton, FL, 2004).

    Book  MATH  Google Scholar 

  29. G. Brightwell, “On the Complexity of Diagram Testing,” Order 10 (4), 297–303 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Brändén and A. Claesson, “Mesh Patterns and the Expansion of Permutation Statistics as Sums of Permutation Patterns,” Electron. J. Combin. 18 (2), Res. Pap. P5, 1–14 (2011).

    MathSciNet  MATH  Google Scholar 

  31. T. Z. Q. Chen, S. Kitaev, and B. Y. Sun, “Word-Representability of Face Subdivisions of Triangular Grid Graphs,” Graphs Combin. 32 (5), 1749–1761 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Z. Q. Chen, S. Kitaev, and B. Y. Sun, “Word-Representability of Triangulations of Grid-Covered Cylinder Graphs,” Discrete Appl.Math. 213, 60–70 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Claesson, “Generalized Pattern Avoidance,” European J. Combin. 22, 961–971 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP Completeness (Freeman, San Francisco, 1979).

    MATH  Google Scholar 

  35. A. L. L. Gao, S. Kitaev, and P. B. Zhang, “On 132-Representable Graphs,” Australas. J. Combin. 69 (1), 105–118 (2017).

    MathSciNet  MATH  Google Scholar 

  36. M. Glen, “Colourability and Word-Representability of Near-Triangulations,” (Cornell Univ. Libr. e-Print Archive, arXiv:1605.01688, 2016).

    Google Scholar 

  37. M. Glen and S. Kitaev, “Word-Representability of Triangulations of Rectangular Polyomino with a Single Domino Tile,” J. Combin.Math. Combin. Comput. 100, 131–144, 2017.

    MathSciNet  MATH  Google Scholar 

  38. M. Glen, S. Kitaev, and A. Pyatkin, “On theRepresentationNumber of aCrownGraph,” (Cornell Univ. Libr. e-Print Archive, arXiv:1609.00674, 2016).

    Google Scholar 

  39. M. Halldórsson, S. Kitaev, and A. Pyatkin, “Graphs Capturing Alternations in Words,” in Developments in Language Theory (Proceedings of 14th International Conference, London, ON, Canada, Aug. 17–20, 2010) (Springer, Heidelberg, 2010), pp. 436–437.

    Google Scholar 

  40. M. Halldórsson, S. Kitaev, and A. Pyatkin, “Alternation graphs,” in Graph-Theoretic Concepts in Computer Science (Revised Papers of 37th International Workshop, TepláMonastery, Czech Republic, June 21–24, 2011) (Springer, Heidelberg, 2011), pp. 191–202.

    Google Scholar 

  41. M. Halldórsson, S. Kitaev, and A. Pyatkin, “Semi-TransitiveOrientations andWord-RepresentableGraphs,” Discrete Appl. Math. 201, 164–171 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Kitaev, Patterns in Permutations and Words (Springer, Heidelberg, 2011).

    Book  MATH  Google Scholar 

  43. S. Kitaev, P. Salimov, C. Severs, and H. Úlfarsson, On the representability of line graphs, in Developments in Language Theory: (Proceedings of 15th International Conference, Milan, Italy, July 19–22, 2010) (Springer, Heidelberg, 2011), pp. 478–479.

    Chapter  Google Scholar 

  44. A. Marcus and G. Tardos, “Excluded Permutation Matrices and the Stanley–Wilf Conjecture,” J. Combin. Theory Ser. A, 107 (1), 153–160 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Mandelshtam, “On Graphs Representable by Pattern-Avoiding Words” (Cornell Univ. Libr. e-Print Archive, arXiv:1608.07614) (2016).

    Google Scholar 

  46. O. Pretzel, “On Graphs That Can Be Oriented as Diagrams of Ordered Sets,” Order 2 (1), 25–40 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Steingrímsson, “GeneralizedPermutation Patterns—A Short Survey,” in Permutation Patterns (Camb. Univ. Press, New York, 2010), pp. 137–152.

    Chapter  Google Scholar 

  48. C. Thomassen, “A Short List Color Proof of Grötzsch’s Theorem,” J. Combin. Theory Ser. B, 88 (1), 189–192 (2003).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kitaev.

Additional information

Original Russian Text © S.V. Kitaev, A.V. Pyatkin, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 2, pp. 19–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitaev, S.V., Pyatkin, A.V. Word-Representable Graphs: a Survey. J. Appl. Ind. Math. 12, 278–296 (2018). https://doi.org/10.1134/S1990478918020084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478918020084

Keywords

Navigation