Skip to main content
Log in

The Hamming Distance Spectrum Between Self-Dual Maiorana–McFarland Bent Functions

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

A bent function is self-dual if it is equal to its dual function. We study the metric properties of the self-dual bent functions constructed on using available constructions. We find the full Hamming distance spectrum between self-dual Maiorana–McFarland bent functions. Basing on this, we find the minimal Hamming distance between the functions under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. N. A. Kolomeec and A. V. Pavlov, “Properties of Bent Functions with Minimal Distance,” Prikl. Diskretn. Mat. No. 4, 5–20 (2009).

    Google Scholar 

  2. O. A. Logachev, A. A. Sal’nikov, S. V. Smyshlyaev, and V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptology (MTsNMO, Moscow, 2012) [in Russian].

    Book  MATH  Google Scholar 

  3. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1977; Svyaz’,Moscow, 1979).

    MATH  Google Scholar 

  4. A. K. Oblaukhov, “Metric Complements to Subspaces in the Boolean Cube,” Diskretn. Anal. Issled. Oper. 23 (3), 93–106 (2016) [J. Appl. Indust. Math. 10 (3), 397–403 (2016)].

    MathSciNet  MATH  Google Scholar 

  5. V. N. Potapov, “Cardinality Spectra of Components of Correlation Immune Functions, Bent Functions, Perfect Colorings, and Codes,” Probl. Peredachi Inform. 48 (1), 54–63 (2012). [Problems Inform. Transmission 48 (1), 47–55 (2012)].

    MathSciNet  MATH  Google Scholar 

  6. N. N. Tokareva, “On Decomposition of a Dual Bent Function into Sum of Two Bent Functions,” Prikl. Discretn. Mat. No. 4, 59–61 (2014).

    MATH  Google Scholar 

  7. L. Budaghyan, C. Carlet, T. Helleseth, A. Kholosha, and S. Mesnager, “Further Results on Niho Bent Functions,” IEEE Trans. Inform. Theory 58 (11), 6979–6985 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Carlet, “Boolean Functions for Cryptography and Error-Correcting Codes,” in Boolean Models and Methods in Mathematics, Computer Science, and Engineering (Cambridge Univ. Press, New York, 2010), pp. 257–397.

    Chapter  Google Scholar 

  9. C. Carlet, L. E. Danielson, M. G. Parker, and P. Solé, “Self-Dual Bent Functions,” Int. J. Inform. Coding Theory 1 (4), 384–399 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. T.W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications (Acad. Press, London, 2017).

    MATH  Google Scholar 

  11. T. Feulner, L. Sok, P. Solé, and A. Wassermann, “Towards the Classification of Self-Dual Bent Functions in Eight Variables,” Des. Codes Cryptogr. 68 (1), 395–406 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. X.-D. Hou, “On the Coefficients of Binary Bent Functions,” Proc. Amer. Math. Soc. 128 (4), 987–996 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. X.-D. Hou, “Classification of Self Dual Quadratic Bent Functions,” Des. Codes Cryptogr. 63 (2), 183–198 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. A. Kolomeec, “The Graph of Minimal Distances of Bent Functions and Its Properties,” Des. Codes Cryptogr. 85 (3), 1–16 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. A. Kolomeec and A. V. Pavlov, “Bent Functions on the Minimal Distance,” in Proceedings of IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (SIBIRCON) (Irkutsk, Russia, July 11–15, 2010) (IEEE, Piscataway, 2010), pp. 145–149.

    Google Scholar 

  16. P. Langevin and G. Leander, “Monomial Bent Functions and Stickelberger’s Theorem,” Finite Fields Appl. 14 (3), 727–742 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. L. McFarland, “A Family of Difference Sets in Noncyclic Groups,” J. Combin. Theory Ser. A, 15 (1), 1–10 (1973).

    Article  MATH  Google Scholar 

  18. S. Mesnager, “Several New Infinite Families of Bent Functions and Their Duals,” IEEE Trans. Inform. Theory 60 (7), 4397–4407 2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Rothaus, “On “Bent” Functions,” J.Combin. Theory Ser. A, 20 (3), 300–305 (1976).

    Article  MATH  Google Scholar 

  20. N. N. Tokareva, “Duality between Bent Functions and Affine Functions,” Discrete Math. 312 (3), 666–670 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. N. Tokareva, Bent Functions: Results and Applications to Cryptography (Acad. Press, London, 2015).

    Book  MATH  Google Scholar 

  22. B. Xu, “Dual Bent Functions on Finite Groups and C-Algebras,” J. Pure Appl. Algebra 220 (3), 1055–1073 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kutsenko.

Additional information

Original Russian Text © A.V. Kutsenko, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 1, pp. 98–119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsenko, A.V. The Hamming Distance Spectrum Between Self-Dual Maiorana–McFarland Bent Functions. J. Appl. Ind. Math. 12, 112–125 (2018). https://doi.org/10.1134/S1990478918010106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478918010106

Keywords

Navigation