Skip to main content
Log in

Abstract

Under study is the diversity of metric balls in connected finite ordinary graphs considered as a metric space with the usual shortest-path metric. We investigate the structure of graphs in which all balls of fixed radius i are distinct for each i less than the diameter of the graph. Let us refer to such graphs as graphs with full diversity of balls. For these graphs, we establish some properties connected with the existence of bottlenecks and find out the configuration of blocks in the graph. Using the obtained properties, we describe the tree-like structure graphs with full diversity of balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. A. Evdokimov, “Locally Isometric Embeddings of Graphs and the Metric Prolongation Property,” Sibirsk. Zh. Issled. Oper. Ser.1, 1 (1), 5–12 (1994) [Discret. Anal. Oper. Res. (Kluwer Acad. Publ., Dordrecht, 1996), pp. 7–14]

    MATH  Google Scholar 

  2. A. A. Evdokimov, E. P. Kutsenogaya, and T. I. Fedoryaeva, “On the Full Diversity of Balls for Graphs,” Prikl. Discretn.Mat. Prilozh. No. 9, 110–112 (2016).

    Google Scholar 

  3. A. A. Evdokimov and T. I. Fedoryaeva, “On the Problem of Characterizing the Diversity Vectors of Balls,” Diskretn. Anal. Issled. Oper. 21 (1), 44–52 (2014) [J. Appl. Indust.Math. 8 (2), 190–195 (2014)].

    MATH  Google Scholar 

  4. V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka, Moscow, 1990; B. I. Wissenschaftsverlag, Mannheim, 1994).

    MATH  Google Scholar 

  5. K. L. Rychkov, “Sufficient Conditions for the Existence of a Graph with a Given Variety of Balls,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (1), 99–108 (2006) [J. Appl. Indust. Math. 1 (3), 380–385 (2007)].

    MATH  Google Scholar 

  6. T. I. Fedoryaeva, “Operations and Isometric Embeddings of Graphs Related to the Metric Prolongation Property,” Diskretn. Anal. Issled. Oper. 2 (3), 49–67 (1995) [Operations Research and Discrete Analysis (Kluwer Acad. Publ., Dordrecht, 1997), pp. 31–49].

    MathSciNet  MATH  Google Scholar 

  7. T. I. Fedoryaeva, “Variety of Balls in Metric Spaces of Trees,” Diskretn. Anal. Issled. Oper. Ser.1, 12 (3), 74–84 (2005).

    MathSciNet  MATH  Google Scholar 

  8. T. I. Fedoryaeva, “Diversity Vectors of Balls in Graphs and Estimates of the Components of the Vectors,” Diskretn. Anal. Issled. Oper. Ser.1, 14 (2), 47–67 (2007) [J. Appl. Indust. Math. 2 (3), 341–356 (2008)].

    MATH  Google Scholar 

  9. T. I. Fedoryaeva, “Exact Upper Estimates of the Number of Different Balls of Given Radius for the Graphs with Fixed Number of Vertices and Diameter,” Diskretn. Anal. Issled. Oper., 16 (6), 74–92 (2009).

    MathSciNet  MATH  Google Scholar 

  10. T. I. Fedoryaeva, “On the Graphs With Given Diameter, Number of Vertices, and Local Diversity of Balls,” Diskretn. Anal. Issled. Oper. 17 (1), 65–74 (2010) [J. Appl. Indust.Math. 5 (1), 44–50 (2011)].

    MathSciNet  MATH  Google Scholar 

  11. T. I. Fedoryaeva, “Majorants and Minorants for the Classes of Graphs with Fixed Diameter and Number of Vertices,” Diskretn. Anal. Issled. Oper. 20 (1), 58–76 (2013) [J. Appl. Indust.Math. 7 (2), 153–165 (2013)].

    MathSciNet  MATH  Google Scholar 

  12. T. I. Fedoryaeva, “Structure of the Diversity Vector of Balls of a Typical Graph with Given Diameter,” Sibir. Elektron. Mat. Izv. 13, 375–387 (2016).

    MathSciNet  MATH  Google Scholar 

  13. J. Guo and L. Volkmann, “A Generalization of Menger’s Theorem for Certain Block-Cactus Graphs,” Graphs Combin. 11 (1), 49–52 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Harary, “A Characterization of Block-Graphs,” Can. Math. Bull. 6 (1), 1–6 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Harary, Graph Theory (Addison-Wesley, Reading,MA, 1969; Mir,Moscow, 1973).

    Book  MATH  Google Scholar 

  16. F. Harary and E.M. Palmer, Graphical Enumeration (Acad. Press, New York, 1973).

    MATH  Google Scholar 

  17. F. Harary and G. E. Uhlenbeck, “On the Number of Husimi Trees,” Proc. Nat. Acad. Sci. U.S.A. 39 (4), 315–322 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. K. Lan and G. J. Chang, “Algorithmic Aspects of the k-Domination Problem in Graphs,” Discrete Appl. Math. 161 (10–11), 1513–1520 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Paten, M. Diekhans, D. Earl, J. St. John, J. Ma, B. Suh, and D. Haussler, “Cactus Graphs for Genome Comparisons,” in Research in Computational Molecular Biology (Proceedings of 14th Annual International Conference RECOMB2010, Lisbon, Portugal, April 25–28, 2010) (Springer, Heidelberg, 2010), pp. 410–425.

    Google Scholar 

  20. B. Randerath and L. Volkmann, “A Characterization of Well Covered Block-Cactus Graphs,” Austral. J. Combin. 9, 307–314 (1994).

    MathSciNet  MATH  Google Scholar 

  21. J. Topp and L. Volkmann, “Well Covered and Well Dominated Block Graphs and Unicyclic Graphs,” Math. Pannonica 1 (2), 55–66 (1990).

    MathSciNet  MATH  Google Scholar 

  22. B. Zmazek and J. Zerovnik, “Estimating the Traffic on Weighted Cactus Networks in Linear Time,” in Information Visualization (9th International Conference on Information Visualization, London, England, July 6–8, 2005) (IEEE Comput. Soc., Los Alamitos, 2005), pp. 536–541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Evdokimov.

Additional information

Original Russian Text © A.A. Evdokimov, T.I. Fedoryaeva, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 1, pp. 25–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimov, A.A., Fedoryaeva, T.I. Tree-Like Structure Graphs with Full Diversity of Balls. J. Appl. Ind. Math. 12, 19–27 (2018). https://doi.org/10.1134/S1990478918010039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478918010039

Keywords

Navigation