Skip to main content
Log in

On the Skeleton of the Polytope of Pyramidal Tours

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider the skeleton of the polytope of pyramidal tours. A Hamiltonian tour is called pyramidal if the salesperson starts in city 1, then visits some cities in increasing order of their numbers, reaches city n, and returns to city 1 visiting the remaining cities in decreasing order. The polytope PYR(n) is defined as the convex hull of the characteristic vectors of all pyramidal tours in the complete graph K n . The skeleton of PYR(n) is the graph whose vertex set is the vertex set of PYR(n) and the edge set is the set of geometric edges or one-dimensional faces of PYR(n). We describe the necessary and sufficient condition for the adjacency of vertices of the polytope PYR(n). On this basis we developed an algorithm to check the vertex adjacency with linear complexity. We establish that the diameter of the skeleton of PYR(n) equals 2, and the asymptotically exact estimate of the clique number of the skeleton of PYR(n) is Θ(n2). It is known that this value characterizes the time complexity in a broad class of algorithms based on linear comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Aizenshtat and D. N. Kravchuk, “On the Minimum of a Linear Form on the Set of All Cycles of the Symmetric Group Sn,” Kibernetika 2, 64–66 (1968) [Cybernetics 4, 52–53 (1968)].

    MATH  Google Scholar 

  2. Yu. A. Belov, “On Clique Number of the Matroid Graph,” Operations Research Models in Computing Systems (Yarosl. Gos. Univ., Yugoslavs, 1985), pp. 95–100.

    Google Scholar 

  3. V. A. Bondarenko, “Nonpolynomial Lower Bounds for the Complexity of the Traveling Salesman Problem in a Class of Algorithms,” Avtom. Telemekh. 44 (9), 44–50 (1983) [Automat. Remote Control 44 (9), 1137–1142 (1983)].

    MathSciNet  MATH  Google Scholar 

  4. V. A. Bondarenko and A. N. Maksimenko, Geometric Constructions and Complexity in Combinatorial Optimization (LKI,Moscow, 2008) [in Russian].

    Google Scholar 

  5. V. A. Bondarenko, A. V. Nikolaev, and D. A. Shovgenov, “1-Skeletons of the Spanning Tree Problems with Additional Constraints,” Model. Anal. Inform. Sistem 22 (9), 453–463 (2015).

    Article  Google Scholar 

  6. P. S. Klyaus, “Generalization of Testproblems for the Traveling Salesman Problem,” Preprint No. 16 (Inst. Mat., Minsk, 1976).

    Google Scholar 

  7. D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Problem: A Computational Study (Princeton Univ. Press, Princeton, NJ, 2007).

    MATH  Google Scholar 

  8. V. A. Bondarenko and A. V. Nikolaev, “On Graphs of the Cone Decompositions for the Min-Cut and Max-Cut Problems,” Internat. J. Math. Math. Sci. 2016, 1–6 (2016).

    Article  MathSciNet  Google Scholar 

  9. V. A. Bondarenko and A. V. Nikolaev, “On the Skeleton of the Pyramidal Tours Polytope,” in Abstracts of 17th Baikal International Schoole–Seminar “Methods of Optimization and Their Applications,” Irkutsk, Russia, July 31–August 6, 2017 (Melentiev Energy Systems Inst., Irkutsk, 2017), p. 84.

    Google Scholar 

  10. V. A. Bondarenko and A. V. Nikolaev, “Some Properties of the Skeleton of the Pyramidal Tours Polytope,” Electron. Notes Discrete Math. 61, 131–137 (2017).

    Article  MATH  Google Scholar 

  11. R. E. Burkard, V. G. Deineko, R. van Dal, J. A. A. van der Veen, and G. J. Woeginger, “Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey,” SIAM Rev. 40 (3), 496–546 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a Large Scale Traveling Salesman Problem,” Tech. Rep. P-510 (RAND Corp., Santa Monica, CA, 1954).

    Google Scholar 

  13. V. G. Deineko, B. Klinz, A. Tiskin, and G. J. Woeginger, “Four-Point Conditions for the TSP: The Complete Complexity Classification,” Discrete Optim. 14, 147–159 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Geist and E. Y. Rodin, “Adjacency of the 0–1 Knapsack Problem,” Comput. Oper. Res. 19 (8), 797–800 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. C. Gilmore, E. L. Lawler, and D. B. Shmoys, “Well-Solved Special Cases,” in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization(Wiley, Chichester, UK, 1985), pp. 87–143.

    Google Scholar 

  16. E. Girlich, M. Höding, A. Horbach, and M. Kovalev, “On the Facets and Diameter of the k-Cycle Polytope,” Optimization 55 (4), 311–339 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Grötschel and M. Padberg, “Polyhedral Theory,” in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization (Wiley, Chichester, UK, 1985), pp. 251–305.

    Google Scholar 

  18. M. W. Padberg and M. R. Rao, “The Travelling Salesman Problem and a Class of Polyhedra of Diameter Two,” Math. Program. 7 (1), 32–45 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. H. Papadimitriou, “The Adjacency Relation on the Traveling Salesman Polytope is NP-Complete,” Math. Program. 14 (1), 312–324 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  20. F. J. Rispoli and S. Cosares, “A Bound of 4 for the Diameter of the Symmetric Traveling Salesman Polytope,” SIAMJ. DiscreteMath. 11 (3), 373–380 (1998).

    MathSciNet  MATH  Google Scholar 

  21. G. Sierksma, “The Skeleton of the Symmetric Traveling Salesman Polytope,” Discrete Appl. Math. 43 (1), 63–74 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Sierksma, R. H. Teunter, and G. A. Tijssen, “Faces of Diameter Two on the Hamiltonian Cycle Polytope,” Oper. Res. Lett. 18 (2), 59–64 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Sierksma and G. A. Tijssen, “Faces with Large Diameter on the Symmetric Traveling Salesman Polytope,” Oper. Res. Lett. 12 (2), 73–77 (1992).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bondarenko.

Additional information

Original Russian Text © V.A. Bondarenko, A.V. Nikolaev, 2018, published in Diskretnyi Analiz i Issledovanie Operatsii, 2018, Vol. 25, No. 1, pp. 5–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, V.A., Nikolaev, A.V. On the Skeleton of the Polytope of Pyramidal Tours. J. Appl. Ind. Math. 12, 9–18 (2018). https://doi.org/10.1134/S1990478918010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478918010027

Keywords

Navigation