Skip to main content
Log in

Abstract

One of the central questions of polyhedral combinatorics is the question of the algorithmic relationship between the vertex and facet descriptions of convex polytopes. From the standpoint of combinatorial optimization, the main reason for the actuality of this question is the possibility of applying the methods of convex analysis to solving the extremal combinatorial problems. In this paper, we consider the combinatorial polytopes of a sufficiently general form. We obtain a few of necessary conditions and a sufficient condition for a supporting inequality of a polytope to be a facet inequality and give an illustration of the use of the developed technology to the polytope of some graph approximation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. A. Ageev, V. P. Il’ev, A. V. Kononov, and A. S. Talevnin, “Computational Complexity of the Graph Approximation Problem,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (1), 3–15 (2006) [J. Appl. Indust. Math. 1 (1), 1–8 (2007)].

    MathSciNet  MATH  Google Scholar 

  2. S. I. Bastrakov and N. Yu. Zolotykh, “Fast Method for Verifying Chernikov Rules in Fourier–Motzkin Elimination,” Zh. Vychisl.Mat. Mat. Fiz. 55 (1), 165–172 (2015) [Comput.Math.Math. Phys. 55 (1), 160–167 (2015)].

    MathSciNet  MATH  Google Scholar 

  3. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polytopes, Graphs, and Optimization (Nauka, Moscow, 1981; Cambridge Univ. Press, New York, 1984).

    MATH  Google Scholar 

  4. V. P. Il’ev, S. D. Il’eva, and A. A. Navrotskaya, “Approximation Algorithms for Graph Approximation Problems,” Diskretn.Anal. Issled.Oper. 18 (1), 41–60 (2011) [J. Appl. Indust.Math. 5 (4), 569–581 (2011)].

    MathSciNet  MATH  Google Scholar 

  5. R. Yu. Simanchev, “On Rank Inequalities That Generate Facets of a Connected k-Factors Polytope,” Diskretn. Anal. Issled. Oper. 3 (3), 84–110 (1996).

    MathSciNet  MATH  Google Scholar 

  6. R. Yu. Simanchev and I. V. Urazova, “An Integer-Valued Model for the Problem of Minimizing the Total Servicing Time of Unit Claims with Parallel Devices with Precedences,” Avtomat. i Telemekh. No. 10, 100–106 (2010) [Automat. Remote Control 71 (10), 2102–2108 (2010)].

    MATH  Google Scholar 

  7. R. Yu. Simanchev and I. V. Urazova, “On the Polytope Faces of the Graph Approximation Problem,” Diskretn. Anal. Issled. Oper. 22 (2), 86–101 (2015) [J. Appl. Indust. Math. 9 (2), 283–291 (2015)].

    MATH  Google Scholar 

  8. V. N. Shevchenko, Qualitative Topics in Integer Linear Programming (Fizmatlit, Moscow, 1995; AMS, Providence, RI, 1997).

    MATH  Google Scholar 

  9. H. Crowder, E. L. Johnson, and M. W. Padberg, “Solving Large-Scale Zero-One Linear Programming Problems,” Oper. Res. 31 (5), 803–834 (1983).

    Article  MATH  Google Scholar 

  10. E. S. Gottlieb and M. R. Rao, “The Generalized Assignment Problem: Valid Inequalities and Facets,” Math. Program. 46 (1–3), 31–52 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Grötschel and O. Holland, “Solution of Large-Scale Symmetric Traveling Salesman Problems,” Math. Program. 51 (1–3), 141–202 (1991).

    Article  MATH  Google Scholar 

  12. M. Grötschel and W. R. Pulleyblank, “Clique Tree Inequalities and the Symmetric Traveling Salesman Problem,” Math. Oper. Res. 11 (4), 537–569 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms (Springer, Heidelberg, 2006).

    MATH  Google Scholar 

  14. M. Křivánek and J. Morávek, “NP-Hard Problems in Hierarchical-Tree Clustering,” Acta Inform. 23 (3), 311–323 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. W. Padberg, “(1, k)-Configurations and Facets for Packing Problems,” Math. Program. 18, 94–99 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  16. M.W. Padberg and G. Rinaldi, “Facet Identification for the Symmetric Traveling Salesman Polytope,” Math. Program. 47, 219–257 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. W. Padberg and G. Rinaldi, “A Branch and Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems,” SIAM Rev. 33, 60–100 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer, Heidelberg, 2004).

    MATH  Google Scholar 

  19. R.Yu. Simanchev and I. V. Urazova, “On the Facets of Combinatorial Polytopes,” in Discrete Optimization and Operations Research: Proceedings of the 9th International Conference DOOR (Vladivostok, Russia, Sept. 19–23, 2016) (Springer, Cham, 2016), pp. 159–170.

    Google Scholar 

  20. L. A. Wolsey, “Valid Inequalities for 0-1 Knapsacks and MIPs with Generalized Upper Bound Constraints,” Discrete Appl.Math. 29 (2–3), 251–261 (1990).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Simanchev.

Additional information

Original Russian Text © R.Yu. Simanchev, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 4, pp. 95–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simanchev, R.Y. On facet-inducing inequalities for combinatorial polytopes. J. Appl. Ind. Math. 11, 564–571 (2017). https://doi.org/10.1134/S1990478917040147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917040147

Keywords

Navigation