Abstract
The operations of bounded suffix summation and bounded suffix multiplication are introduced. Using these operations, we define the class BSSM of polynomially computable functions. It is proved that the class BSSMcontains the class BPC defined by the operation of bounded prefix concatenation and has finite basis under superposition.
References
S. A. Volkov, “An Example of a Simple Quasi-Universal Function in the Class ε 2 of the Grzegorczyk Hierarchy,” Diskretn.Mat. 18 (4), 31–44 (2006) [DiscreteMath. Appl. 16 (5), 513–526 (2006)].
A. I. Maltsev, “Iterative Algebras and Post Manifolds,” Algebra i Logika 5 (2), 5–24 (1966).
A. I. Maltsev, Iterative Post Algebras (Izd. Novosib. Gos. Univ., Novosibirsk, 1976) [in Russian].
S. S. Marchenkov, “Elimination of Recursion Schemas in the Grzegorczyk Class ε 2,” Mat. Zametki 5 (5), 561–568 (1969) [Math. Notes Acad. Sci. USSR 5 (5), 336–340 (1969)].
S. S. Marchenkov, “On Bounded Recursions,” Math. Balk. 2, 124–142 (1972).
S. S. Marchenkov, “Bases under Superposition in the Classes of Recursive Functions,” in Mathematical Problems of Cybernetics, Vol. 3 (Nauka, Moscow, 1991), pp. 115–139.
S. S. Marchenkov, “Superpositions of Elementary Arithmetical Functions,” Disretn. Anal. Issled. Oper. Ser. 1, 13 (4), 33–48 (2006) [J. Appl. Indust. Math. 1 (3), 351–360 (2007)].
S. S. Marchenkov, Elementary Arithmetical Functions (Librokom, Moscow, 2009) [in Russian].
S. S. Marchenkov, “Bounded Monotonic Recursion and Multihead Automata,” Programmirovanie No. 6, 3–11 (2013) [Program. Comput. Software 39 (6), 301–308 (2013)].
S. S. Marchenkov, “On ElementaryWord Functions Obtained by Bounded Prefix Concatenation,” Diskretn. Mat. 27 (3), 44–55 (2015) [DiscreteMath. Appl. 26 (3), 155–163 (2016)].
S. S. Marchenkov, Classes of Elementary Recursive Functions (Fizmatlit, Moscow, 2016) [in Russian].
K.V. Osipov, “OnQuasi-UniversalWord Functions,” VestnikMoskov. Univ. Ser. 15: Vychisl.Mat. Kibernet. No. 1, 28–34 (2016) [Moscow. Univ. Comput.Math. Cybern. 40 (1), 28–34 (2016)].
L. Kalmár, “Egyszerüpélda eladönthetetlen aritmetikai problémára,” Mat. Fiz. Lapok 50, 1–23 (1943).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.S. Marchenkov, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 4, pp. 60–76.
Rights and permissions
About this article
Cite this article
Marchenkov, S.S. On the operations of bounded suffix summation and multiplication. J. Appl. Ind. Math. 11, 545–553 (2017). https://doi.org/10.1134/S1990478917040123
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478917040123