Skip to main content
Log in

Abstract

The operations of bounded suffix summation and bounded suffix multiplication are introduced. Using these operations, we define the class BSSM of polynomially computable functions. It is proved that the class BSSMcontains the class BPC defined by the operation of bounded prefix concatenation and has finite basis under superposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. A. Volkov, “An Example of a Simple Quasi-Universal Function in the Class ε 2 of the Grzegorczyk Hierarchy,” Diskretn.Mat. 18 (4), 31–44 (2006) [DiscreteMath. Appl. 16 (5), 513–526 (2006)].

    Article  MathSciNet  Google Scholar 

  2. A. I. Maltsev, “Iterative Algebras and Post Manifolds,” Algebra i Logika 5 (2), 5–24 (1966).

    MathSciNet  Google Scholar 

  3. A. I. Maltsev, Iterative Post Algebras (Izd. Novosib. Gos. Univ., Novosibirsk, 1976) [in Russian].

    Google Scholar 

  4. S. S. Marchenkov, “Elimination of Recursion Schemas in the Grzegorczyk Class ε 2,” Mat. Zametki 5 (5), 561–568 (1969) [Math. Notes Acad. Sci. USSR 5 (5), 336–340 (1969)].

    MathSciNet  Google Scholar 

  5. S. S. Marchenkov, “On Bounded Recursions,” Math. Balk. 2, 124–142 (1972).

    MathSciNet  Google Scholar 

  6. S. S. Marchenkov, “Bases under Superposition in the Classes of Recursive Functions,” in Mathematical Problems of Cybernetics, Vol. 3 (Nauka, Moscow, 1991), pp. 115–139.

    MathSciNet  MATH  Google Scholar 

  7. S. S. Marchenkov, “Superpositions of Elementary Arithmetical Functions,” Disretn. Anal. Issled. Oper. Ser. 1, 13 (4), 33–48 (2006) [J. Appl. Indust. Math. 1 (3), 351–360 (2007)].

    MATH  Google Scholar 

  8. S. S. Marchenkov, Elementary Arithmetical Functions (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  9. S. S. Marchenkov, “Bounded Monotonic Recursion and Multihead Automata,” Programmirovanie No. 6, 3–11 (2013) [Program. Comput. Software 39 (6), 301–308 (2013)].

    MATH  Google Scholar 

  10. S. S. Marchenkov, “On ElementaryWord Functions Obtained by Bounded Prefix Concatenation,” Diskretn. Mat. 27 (3), 44–55 (2015) [DiscreteMath. Appl. 26 (3), 155–163 (2016)].

    Article  Google Scholar 

  11. S. S. Marchenkov, Classes of Elementary Recursive Functions (Fizmatlit, Moscow, 2016) [in Russian].

    MATH  Google Scholar 

  12. K.V. Osipov, “OnQuasi-UniversalWord Functions,” VestnikMoskov. Univ. Ser. 15: Vychisl.Mat. Kibernet. No. 1, 28–34 (2016) [Moscow. Univ. Comput.Math. Cybern. 40 (1), 28–34 (2016)].

    Google Scholar 

  13. L. Kalmár, “Egyszerüpélda eladönthetetlen aritmetikai problémára,” Mat. Fiz. Lapok 50, 1–23 (1943).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Marchenkov.

Additional information

Original Russian Text © S.S. Marchenkov, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 4, pp. 60–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenkov, S.S. On the operations of bounded suffix summation and multiplication. J. Appl. Ind. Math. 11, 545–553 (2017). https://doi.org/10.1134/S1990478917040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917040123

Keywords

Navigation