Skip to main content
Log in

Abstract

It is proved that if l is at least Δ/2 − 1 then (1, l)-chromatic number of an arbitrary multigraph of maximum degree Δ is at most Δ+1. Moreover, it is proved that the incidentors of every directed prism can be colored in four colors so that every two adjacent incidentors are colored distinctly and the difference between the colors of the final and initial incidentors of each arc is 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. G. Vizing, “A Bipartite Interpretation of a Directed Multigraph in Problems of the Coloring the Incidentors,” Diskretn. Anal. Issled. Oper. Ser. 1, 9 (1), 27–41 (2002).

    MathSciNet  Google Scholar 

  2. V. G. Vizing, “On Linear Factors ofMultigraphs,” Diskretn. Anal. Issled. Oper. Ser. 1, 10 (4), 3–7 (2003).

    MathSciNet  MATH  Google Scholar 

  3. V. G. Vizing, L. S. Mel’nikov, and A. V. Pyatkin, “On the (k, l)-Coloring of Incidentors,” Diskretn. Anal. Issled. Oper. Ser. 1, 7 (4), 29–37 (2000).

    MathSciNet  MATH  Google Scholar 

  4. A. V. Pyatkin, “Some Optimization Problems of Scheduling the Transmission of Messages in a Local Communication Network,” Diskretn. Anal. Issled. Oper. 2 (4), 74–79 (1995) [in Operations Research and Discrete Analysis, Ed. by A. D. Korshunov (Kluwer Acad. Publ., Dordrecht, 1997), pp. 227–232].

    MathSciNet  MATH  Google Scholar 

  5. A. V. Pyatkin, “Upper and Lower Bounds for the Incidentor (k, l)-Chromatic Number,” Diskretn. Anal. Issled. Oper. Ser. 1, 11 (1), 93–102 (2004).

    MathSciNet  MATH  Google Scholar 

  6. A. V. Pyatkin, “On (1, 1)-Coloring of Incidentors of Multigraphs of Degree 4,” Diskretn. Anal. Issled. Oper. Ser. 1, 11 (3), 59–62 (2004).

    MathSciNet  MATH  Google Scholar 

  7. R. Diestel, Graph Theory (Springer, Heidelberg, 2016).

    MATH  Google Scholar 

  8. L. S. Mel’nikov and V. G. Vizing, “The Edge Chromatic Number of a Directed/MixedMultigraph,” J. Graph Theory 31 (4), 267–273 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Petersen, “Die Theorie der regulären Graphen,” ActaMath. 15, 193–220 (1891).

    MATH  Google Scholar 

  10. D. B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Golovachev.

Additional information

Original Russian Text © M.O. Golovachev, A.V. Pyatkin, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 4, pp. 34–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovachev, M.O., Pyatkin, A.V. On (1,l)-coloring of incidentors of multigraphs. J. Appl. Ind. Math. 11, 514–520 (2017). https://doi.org/10.1134/S1990478917040081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917040081

Keywords

Navigation