Abstract
We consider the m-Peripatetic Salesman Problem (m-PSP) on random inputs with discrete distribution function. In this paper we present a polynomial approximation algorithm which, under certain conditions, with high probability (w.h.p.) gives optimal solution for both the m-PSP on random inputs with identical weight functions and the m-PSP with different weight functions.
References
A. A. Ageev, A. E. Baburin, and E. Kh. Gimadi, “A 3/4-Approximation Algorithm for Finding Two Disjoint Hamiltonian Cycles of Maximum Weight,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (2), 11–20 (2006) [J. Appl. Indust. Math. 1 (2), 142–147 (2007)].
A. A. Ageev and A. V. Pyatkin, “A 2-Approximation Algorithm for the Metric 2-Peripatetic Salesman Problem,” Diskretn. Anal. Issled. Oper. 16 (4), 3–20 (2009).
A. E. Baburin and E. Kh. Gimadi, “On the Asymptotic Optimality of an Algorithm for Solving the Maximum m-PSP in a Multidimensional Euclidean Space,” Trudy Inst. Mat. Mekh. 16 (3), 12–24 (2010) [Proc. Steklov Inst. Math. 272, Suppl. 1, S1–S13 (2011)]
A. E. Baburin and E. Kh. Gimadi, and N. M. Korkishko, “Approximation Algorithms for Finding Two Edge-Disjoint Hamiltonian Cycles of Minimal Total Weight,” Diskretn. Anal. Issled. Oper. Ser. 2, 11 (1), 11–25 (2004).
E. Kh. Gimadi, Yu. V. Glazkov, and A. N. Glebov, “Approximation Algorithms for Solving the 2-Peripatetic Salesman Problem on a Complete Graph with Edge Weights 1 and 2,” Diskretn. Anal. Issled. Oper. Ser. 2, 14 (2), 41–61 (2007) [J. Appl. Indust. Math. 3 (1), 46–60 (2009)].
E. Kh. Gimadi, Yu. V. Glazkov, and O. Yu. Tsidulko, “The Probabilistic Analysis of an Algorithm for Solving the m-Planar 3-Dimensional Assignment Problem on One-Cycle Permutations,” Diskretn. Anal. Issled. Oper. 21 (1), 15–29 (2014) [J. Appl. Indust. Math. 8 (2), 208–217 (2014)].
E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, and O. Yu. Tsidulko, “Probabilistic Analysis of an Approximation Algorithm for the m-Peripatetic Salesman Problem on Random Instances Unbounded from Above,” Trudy Inst. Mat. Mekh. 20 (2), 88–98 (2014) [Proc. Steklov Inst. Math. 289, Suppl. 1, S77–S87 (2015)].
E. Kh. Gimadi and E. V. Ivonina, “Approximation Algorithms for the Maximum 2-Peripatetic Salesman Problem,” Diskretn. Anal. Issled. Oper. 19 (1), 17–32 (2012) [J. Appl. Indust. Math. 6 (3), 295–305 (2012)].
E. Kh. Gimadi and V. A. Perepelitsa, “A Statistically Effective Algorithm for Selection of a Hamiltonian Contour or Cycle,” in Discrete Analysis, Vol. 22 (Inst. Mat. SO AN SSSR, Novosibirsk, 1973), pp. 15–28.
A. N. Glebov and D. Zh. Zambalaeva, “A Polynomial Algorithm with Approximation Ratio 7/9 for the Maximum Two Peripatetic Salesmen Problem,” Diskretn. Anal. Issled. Oper. 18 (4), 17–48 (2011) [J. Appl. Indust. Math. 6 (1), 69–89 (2012)].
A. N. Glebov and D. Zh. Zambalaeva, “An Approximation Algorithm for the Minimum Two Peripatetic Salesmen Problem with Different Weight Functions,” Diskretn. Anal. Issled. Oper. 18 (5), 11–37 (2011) [J. Appl. Indust. Math. 6 (2), 167–183 (2012)].
A. D. Korshunov, “On the Power of Some Classes of Graphs,” Dokl. Akad. Nauk SSSR 193 (6), 1230–1233 (1970) [Soviet Math. Dokl. 11 (6), 1100–1104 (1970)].
V. V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables (Nauka, Moscow, 1987; Clarendon Press, Oxford, 1995).
D. Angluin and L. G. Valiant, “Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings,” J. Comput. Syst. Sci. 18 (2), 155–193 (1979).
B. Bollobás, T. I. Fenner, and A. M. Frieze, “An Algorithm for Finding Hamilton Paths and Cycles in Random Graphs,” Combinatorica 7 (4), 327–341 (1987).
M. J. D. De Brey and A. Volgenant, “Well-Solved Cases of the 2-Peripatetic Salesman Problem,” Optimization 39 (3), 275–293 (1997).
J. B. J. M. De Kort, “Lower Bounds for Symmetric K-Peripatetic Salesman Problems,” Optimization 22 (1), 113–122 (1991).
J. B. J. M. De Kort, “Bounds for the Symmetric K-Peripatetic Salesman Problem,” Optimization 23 (4), 357–367 (1992).
J. B. J. M. De Kort, “A Branch and Bound Algorithm for Symmetric 2-Peripatetic Salesman Problems,” European J. Oper. Res. 70 (2), 229–243 (1993).
P. Erdös and A. Rényi, “On Random Graphs I,” Publ. Math. 6, 290–297 (1959).
A. M. Frieze, “An Algorithm for Finding Hamiltonian cycles in Random Directed Graphs,” J. Algorithms 9 (2), 181–204 (1988).
A. M. Frieze and S. Haber, “An Almost Linear Time Algorithm for Finding Hamiltonian cycles in Sparse Random Graphs with Minimum Degree at Least Three,” Random Struct. Algorithms 47 (1), 73–98 (2015).
E. Kh. Gimadi, A. N. Glebov, A. A. Skretneva, O. Yu. Tsidulko, and D. Zh. Zambalaeva, “Combinatorial Algorithms with Performance Guarantees for Finding Several Hamiltonian Circuits in a Complete Directed Weighted Graph,” Discrete Appl. Math. 196 (11), 54–61 (2015).
A. N. Glebov and A. V. Gordeeva, “An Algorithm with Approximation Ratio 5/6 for the Metric Maximumm-PSP,” in Discrete Optimization and Operations Research: Proceedings of 9th International Conference DOOR, Vladivostok, Russia, Sept. 19–23, 2016 (Springer, Cham, Switzerland, 2016), pp. 159–170.
J. Komlós and E. Szemerédi, “Limit Distributions for the Existence of Hamilton Circuits in a Random Graph,” Discrete Math. 43 (1), 55–63 (1983).
J. Krarup, “The Peripatetic Salesman and Some Related Unsolved Problems,” in Combinatorial Programming: Methods and Applications, (Proceedings of NATO Advance Study Institute, Versailles, France, September 2–13, 1974) (D. Reidel, Dordrecht, 1975), pp. 173–178.
L. Posa, “Hamiltonian Circuits in Random Graphs,” Discrete Math. 14 (4), 359–364 (1976).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © E.Kh. Gimadi, O.Yu. Tsidulko, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 3, pp. 5–19.
Rights and permissions
About this article
Cite this article
Gimadi, E.K., Tsidulko, O.Y. An asymptotically optimal algorithm for the m-Peripatetic Salesman Problem on random inputs with discrete distribution. J. Appl. Ind. Math. 11, 354–361 (2017). https://doi.org/10.1134/S1990478917030061
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478917030061