Skip to main content
Log in

Computational complexity of the original and extended diophantine Frobenius problem

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We deduce the law of nonstationary recursion which makes it possible, for given a primitive set A = {a 1,...,a k }, k > 2, to construct an algorithm for finding the set of the numbers outside the additive semigroup generated by A. In particular, we obtain a new algorithm for determining the Frobenius numbers g(a 1,...,a k ). The computational complexity of these algorithms is estimated in terms of bit operations. We propose a two-stage reduction of the original primitive set to an equivalent primitive set that enables us to improve complexity estimates in the cases when the two-stage reduction leads to a substantial reduction of the order of the initial set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. I. Arnold, Experimental Observation of Mathematical Facts (MTsNMO, Moscow, 2006).

    Google Scholar 

  2. A. V. Ustinov, “The Solution of Arnold’s Problem on the Weak Asymptotics of Frobenius Numbers with Three Arguments,” Mat. Sb. 200 (4), 131–160 (2009) [Sb. Math. 200 (4), 597–627 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  3. A. V. Ustinov, “Geometric Proof of Rødseth’s Formula for Frobenius Numbers,” Trudy Mat. Inst. Steklova 276, 280–287 (2012) [Proc. Steklov Inst. Math. 276 (1), 275–282 (2012)].

    MathSciNet  MATH  Google Scholar 

  4. V. M. Fomichev, “Primitive Sets of Numbers Being Equivalent by Frobenius,” Prikladn. Diskretn. Mat., No. 1, 20–26 (2014).

    Google Scholar 

  5. V. M. Fomichev, “Estimates for Exponent of Some Graphs by Means of Frobenius’s Numbers of Three Arguments,” Prikladn. Diskretn. Mat., No. 2, 88–96 (2014).

    Google Scholar 

  6. S. Böcker and Zs. Lipták, “The Money Changing Problem Revisited: Computing the Frobenius Number in Time O(ka1),” in Computing and Combinatorics: Proceedings of 4th Annual International Conference, Kunming, China, August 16–19, 2005 (Springer, Heidelberg, 2005), pp. 965–974.

    Chapter  Google Scholar 

  7. C. Bogart, Calculating Frobenius Numbers with Boolean Toeplitz Matrix Multiplication (2009). Available at http://quetzal.bogarthome.net/frobenius.pdf. Accessed Mar. 10, 2017.

    Google Scholar 

  8. A. Brauer, “On a Problem of Partitions,” Amer. J. Math. 64, 299–312 (1942).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Brauer and J. E. Shockley, “On a Problem of Frobenius,” J. Reine Angew. Math. 211, 215–220 (1962).

    MathSciNet  MATH  Google Scholar 

  10. F. Curtis, “On Formulas for the Frobenius Number of a Numerical Semigroup,” Math. Scand. 67, 190–192 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. R. Heap and M. S. Lynn, “A Graph-Theoretic Algorithm for the Solution of a Linear Diophantine Problem of Frobenius,” Numer. Math. 6, 346–354 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. R. Heap and M. S. Lynn, “On a Linear Diophantine Problem of Frobenius: An Improved Algorithm,” Numer. Math. 7, 226–231 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. B. Johnson, “Efficient Algorithms for Shortest Paths in Space Networks,” J. ACM 24, 1–13 (1977).

    Article  MATH  Google Scholar 

  14. M. Nijenhuis, “A Minimal-Path Algorithm for the ‘Money Changing Problem’,” Amer. Math. Monthly 86, 832–835 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem (Clarendon Press, Oxford, 2005).

    Book  MATH  Google Scholar 

  16. J. J. Sylvester, “Problem 7382,” in Mathematical Questions with Their Solutions: From the “Educational Times”, Vol. 41 (Francis Hodgson, London, 1884), p. 21. Available at http://archive.org/stream/mathematicalque05unkngoog#page/n150/mode/2up. Accessed Mar. 10, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Fomichev.

Additional information

Original Russian Text © V.M. Fomichev, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 3, pp. 104–124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomichev, V.M. Computational complexity of the original and extended diophantine Frobenius problem. J. Appl. Ind. Math. 11, 334–346 (2017). https://doi.org/10.1134/S1990478917030048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917030048

Keywords

Navigation