Skip to main content
Log in

Abstract

The class of outerplanar graphs is used for testing the average complexity of algorithms on graphs. A random labeled outerplanar graph can be generated by a polynomial algorithm based on the results of an enumeration of such graphs. By a bicyclic (tricyclic) graph we mean a connected graph with cyclomatic number 2 (respectively, 3). We find explicit formulas for the number of labeled connected outerplanar bicyclic and tricyclic graphs with n vertices and also obtain asymptotics for the number of these graphs for large n. Moreover, we obtain explicit formulas for the number of labeled outerplanar bicyclic and tricyclic n-vertex blocks and deduce the corresponding asymptotics for large n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. A. Voblyi, Asymptotic Enumeration of Graphs of Some Types, Candidate’s Dissertation inMathematics and Physics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1985) [in Russian].

    Google Scholar 

  2. V. A. Voblyi, “On a Formula for the Number of Labeled Connected Graphs„” Diskretn. Anal. Issled. Oper. 19 (4), 48–59 (2012).

  3. V. A. Voblyi and A. K. Meleshko, “Enumeration of Labeled Rose Graphs,” in Proceedings of XVI International Scientific-Technical Seminar “Combinatorial Configurations and Its Applications”, Kirovograd, Ukraine, Apr. 11–12, 2014 (Kirovograd. Nats. Techn. Univ., Kirovograd, 2014), pp. 27–29.

    Google Scholar 

  4. E. F. Dmitriev, Enumeration of Labeled Two-Colored Connected Graphs with Small Cyclomatic Number, Available from VINITI, No. 4559-85 (1985).

    Google Scholar 

  5. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  6. V. E. Stepanov, “On Some Features of the Structure of a Random Graph near a Critical Point,” Teoriya Veroyatn. Primen. 32 (4), 633–657 (1987) [Theory Probab. Appl. 32 (4), 573–594 (1987)].

    MathSciNet  MATH  Google Scholar 

  7. F. Harary, Graph Theory (Addison-Wesley, Reading, MA, USA, 1969;Mir, Moscow, 1973).

    MATH  Google Scholar 

  8. F. Harary and E. M. Palmer, Graphical Enumeration (Acad. Press, New York, 1973; Mir, Moscow, 1977).

    MATH  Google Scholar 

  9. M. Bodirsky and M. Kang, “Generating Outerplanar Graphs Uniformly at Random,” Combin. Probab. Comput. 15 (3), 333–343 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Bodirsky, O. Gimenez, M. Kang, and M. Noy, “Enumeration and Limit Laws of Series-Parallel Graph,” European J. Combin. 28, 2091–2105 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. W. Ford and G. E. Uhlenbeck, “Combinatorial Problems in the Theory of Graphs. IV,” Proc. Nat. Acad. Sci. USA 43 (1), 163–167 (1957).

    Article  MathSciNet  Google Scholar 

  12. D. E. Knuth and B. Pittel, “A Recurrence Related to Trees, Proc. Am. Math. Soc. 105 (2), 335–349 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. C. Read, “Some Unusual Enumeration Problems,” Ann. N. Y. Acad. Sci. 175, 314–326 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. M. Wright, “The Number of Connected Sparsely Edged Graphs,” J. Graph Theory 1 (4), 317–330 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. M. Wright, “The Number of Connected Sparsely EdgedGraphs. II. SmoothGraphs and Blocks,” J. Graph Theory 2 (4), 299–305 (1978).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Voblyi.

Additional information

Original Russian Text © V.A. Voblyi, A.K. Meleshko, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 2, pp. 18–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voblyi, V.A., Meleshko, A.K. Enumeration of labeled outerplanar bicyclic and tricyclic graphs. J. Appl. Ind. Math. 11, 296–303 (2017). https://doi.org/10.1134/S1990478917020168

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917020168

Keywords

Navigation