Skip to main content
Log in

Abstract

We consider k-threshold functions of n variables, i.e. the functions representable as the conjunction of k threshold functions. For n = 2, k = 2, we give upper bounds for the cardinality of the minimal teaching set depending on the various properties of the function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. N. Yu. Zolotykh and V. N. Shevchenko, “Estimating the Complexity of Deciphering a Threshold Function in a k-Valued Logic,” Zh. Vychisl. Mat. Mat. Fiz. 39 (2), 346–352 (1999) [Comput. Math. Math. Phys. 39 (2), 328–334 (1999)].

    MathSciNet  MATH  Google Scholar 

  2. V. N. Shevchenko and N. Yu. Zolotykh, “On the Complexity of Deciphering the Threshold Functions of k-Valued Logic,” Dokl. Akad. Nauk 362 (5), 606–608 (1998) [Dokl. Math. 58 (2), 268–270 (1998)].

    MathSciNet  MATH  Google Scholar 

  3. M. A. Alekseyev, M. G. Basova, and N. Yu. Zolotykh, “On the Minimal Teaching Sets of Two-Dimensional Threshold Functions,” SIAMJ. DiscreteMath. 29 (1), 157–165 (2015).

    MathSciNet  MATH  Google Scholar 

  4. M. Anthony, G. Brightwell, and J. Shawe-Taylor, “On Specifying Boolean Functions by Labelled Examples,” Discrete Appl. Math. 61 (1), 1–25 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. W. J. Bultman and W. Maass, “Fast Identification of Geometric Objects with Membership Queries,” Inform. Comput. 118 (1), 48–64 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Yu. Chirkov and N. Yu. Zolotykh, “On the Number of Irreducible Points in Polyhedra,” Graphs Combin. 32 (5), 1789–1803 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. N. Shevchenko and N. Yu. Zolotykh, “Lower Bounds for the Complexity of Learning Half-Spaces with Membership Queries,” in Algorithmic Learning Theory (Proceedings of 9th International Conference, Otzenhausen, Germany, October 8–10, 1998) (Springer, Berlin, 1998), pp. 61–71.

    Chapter  Google Scholar 

  8. J. Trainin, “An Elementary Proof of Pick’s Theorem,” Math. Gaz. 91 (522), 536–540 (2007).

    Article  Google Scholar 

  9. E. Zamaraeva, “On Teaching Sets of k-Threshold Functions,” Inform. and Comput. 251, 301–313 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Zamaraeva.

Additional information

Original Russian Text © E.M. Zamaraeva, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 1, pp. 31–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamaraeva, E.M. On teaching sets for 2-threshold functions of two variables. J. Appl. Ind. Math. 11, 130–144 (2017). https://doi.org/10.1134/S199047891701015X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891701015X

Keywords

Navigation