Skip to main content
Log in

Abstract

A proper incidentor coloring is called a (k, l)-coloring if the difference between the colors of the final and initial incidentors ranges between k and l. In the list variant, the extra restriction is added: the color of each incidentor must belong to the set of admissible colors of the arc. In order to make this restriction reasonable we assume that the set of admissible colors for each arc is an integer interval. The minimum length of the interval that guarantees the existence of a list incidentor (k, l)-coloring is called a list incidentor (k, l)-chromatic number. Some bounds for the list incidentor (k, l)-chromatic number are proved for multigraphs of degree 2 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. G. Vizing, “Incidentor Coloring of Multigraphs in PrescribedColors,” Diskretn. Anal. Issled. Oper. Ser. 1, 7 (1), 32–39 (2000).

    MathSciNet  Google Scholar 

  2. V. G. Vizing, “A Bipartite Interpretation of a Directed Multigraph in Problems of Coloring the Incidentors,” Diskretn. Anal. Issled. Oper. Ser. 1, 9 (1), 27–41 (2002).

    MathSciNet  Google Scholar 

  3. V. G. Vizing, “Strict Coloring of Incidentors inUndirectedMultigraphs,” Diskretn. Anal. Issled. Oper. Ser. 1, 12 (3), 48–53 (2005).

    MathSciNet  MATH  Google Scholar 

  4. V. G. Vizing, “On the (p, q)-Coloring of Incidentors of an Undirected Multigraph,” Diskretn. Anal. Issled. Oper. Ser. 1, 12 (4), 23–39 (2005).

    MathSciNet  MATH  Google Scholar 

  5. V. G. Vizing, L. S. Mel’nikov, and A. V. Pyatkin, “On the (k, l)-Coloring of Incidentors,” Diskretn. Anal. Issled. Oper. Ser. 1, 7 (4), 29–37 (2000).

    MathSciNet  MATH  Google Scholar 

  6. V. G. Vizing and A. V. Pyatkin, “Incidentor Coloring of Multigraphs,” in Topics in Graph Theory, Ed. by R. I. Tyshkevich (Urbana, USA, 2013), pp. 197–209 [Available at http://www.math.uiuc.edu/˜kostochk/.AccessedMar. 3, 2015].

    Google Scholar 

  7. A. V. Pyatkin, “Some Problems for Optimizing the Routing of Messages in a Local Communication Network,” Diskretn. Anal. Issled. Oper. 2 (4), 74–79 (1995) [Operations Research and Discrete Analysis, Ed. by A. D. Korshunov (Kluwer Acad. Publ., Dordrecht, 1997), pp. 227–232].

    MathSciNet  MATH  Google Scholar 

  8. A. V. Pyatkin, “(k, l)-Coloring of Incidentors of Cubic Multigraphs,” Diskretn. Anal. Issled. Oper. Ser. 1, 9 (1), 49–53 (2002).

    MathSciNet  Google Scholar 

  9. A. V. Pyatkin, “Some Upper Bounds for the Incidentor (k, l)-Chromatic Number,” Diskretn. Anal. Issled. Oper. Ser. 1, 10 (2), 66–78 (2003).

    MathSciNet  MATH  Google Scholar 

  10. A. V. Pyatkin, “Upper and Lower Bounds for the Incidentor (k, l)-Chromatic Number,” Diskretn. Anal. Issled. Oper. Ser. 1, 11 (1), 93–102 (2004).

    MathSciNet  MATH  Google Scholar 

  11. A. V. Pyatkin, “On (1, 1)-Coloring of Incidentors of Multigraphs of Degree 4,” Diskretn. Anal. Issled. Oper. Ser. 1, 11 (3), 59–62 (2004).

    MathSciNet  MATH  Google Scholar 

  12. A. V. Pyatkin, “On List Incidentor Coloring of aMultigraph of Degree 3,” Diskretn. Anal. Issled. Oper. Ser. 1, 14 (3), 80–89 (2007) [J. Appl. Indust. Math. 2 (4), 560-565 (2008)].

    MATH  Google Scholar 

  13. O. V. Borodin, A. V. Kostochka, and D. R. Woodall, “List Edge and List Total Colorings of Multigraphsa,” J. Combin. Theory Ser. B 71 (2), 184–204 (1997).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Vasil’eva.

Additional information

Original Russian Text © E.I. Vasil’eva, A.V. Pyatkin, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 1, pp. 21–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, E.I., Pyatkin, A.V. On list incidentor (k, l)-coloring. J. Appl. Ind. Math. 11, 125–129 (2017). https://doi.org/10.1134/S1990478917010148

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917010148

Keywords

Navigation