Skip to main content
Log in

Abstract

A graph is called a 1-triangle if, for its every maximal independent set I, every edge of this graph with both endvertices not belonging to I is contained exactly in one triangle with a vertex of I. We obtain a characterization of 1-triangle graphs which implies a polynomial time recognition algorithm. Computational complexity is establishedwithin the class of 1-triangle graphs for a range of graph-theoretical parameters related to independence and domination. In particular, NP-completeness is established for the minimum perfect neighborhood set problem in the class of all graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. C. Bergé, Théorie des graphes et ses applications (Dunod, Paris, 1958; Inostrannaya Literatura, Moscow, 1962).

    MATH  Google Scholar 

  2. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    Google Scholar 

  3. V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka, Moscow, 1990; B. I. Wissenschaftsverlag, Mannheim, 1994).

    MATH  Google Scholar 

  4. Yu. A. Kartynnik and Yu. L. Orlovich, “Domination Triangle Graphs and Upper Bound Graphs,” Dokl. Nats. Akad. Nauk Belarusi 58 (1), 16–25 (2014).

    Google Scholar 

  5. Yu. L. Orlovich, V. S. Gordon, J. Blazewicz, I. E. Zverovich, and G. Finke, “Independent Dominating and Neighborhood Sets in Triangular Graphs,” Dokl. Nats. Akad. Nauk Belarusi 53 (1), 39–44 (2009).

    MathSciNet  MATH  Google Scholar 

  6. C. Anbeek, D. DeTemple, K. McAvaney, and J. M. Robertson, “When Are Chordal Graphs Also Partition Graphs?,” Australas. J. Combin. 16, 285–293 (1997).

    MathSciNet  MATH  Google Scholar 

  7. B. Bollobás and E. J. Cockayne, “Graph-Theoretic Parameters Concerning Domination, Independence, and Irredundance,” J. Graph Theory 3 (3), 241–249 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Boros, V. Gurvich, and M. Milanic, “On Equistable, Split, CIS, and Related Classes of Graphs,” (Cornell Univ. Libr. e-Print Archive, arXiv:1505. 05683, 2015).

    MATH  Google Scholar 

  9. G. A. Cheston, E. O. Hare, S. T. Hedetniemi, and R. C. Laskar, “Simplicial Graphs,” Congr. Numerantium 67, 105–113 (1988).

    MathSciNet  MATH  Google Scholar 

  10. G. A. Cheston and T. S. Jap, “A Survey of the Algorithmic Properties of Simplicial, Upper Bound andMiddle Graphs,” J. Graph Algorithms Appl. 10 (2), 159–190 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. DeTemple, F. Harary, and J. M. Robertson, “PartitionGraphs,”Soochow J. Math. 13 (2), 121–129 (1987).

  12. D. DeTemple and J. M. Robertson, “Graphs Associated with Triangulations of Lattice Polygons,” J. Austral. Math. Soc. Ser. A 47 (3), 391–398 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Guruswami, C. P. Rangan, M. S. Chang, G. J. Chang, and C. K. Wong, “The Vertex-Disjoint Triangles Problem,” in Graph-Theoretic Concepts in Computer Science (Proceedings of 24th International Workshop, Smolenice Castle, Slovak Republic, June 18–20, 1998) (Springer, Heidelberg, 1998), pp. 26–37.

    Chapter  Google Scholar 

  14. T. Kloks, C.-M. Lee, J. Liu, and H. Müller, “On the Recognition of General Partition Graphs,” in Graph-Theoretic Concepts in Computer Science (Proceedings of 29th International Workshop, Elspeet, The Netherlands, June 19–21, 2003) (Springer, Heidelberg, 2003), pp. 273–283.

    Chapter  Google Scholar 

  15. K. McAvaney, J. M. Robertson, and D. DeTemple, “A Characterization and Hereditary Properties for Partition Graphs,” DiscreteMath. 113 (1), 131–142 (1993).

    MathSciNet  MATH  Google Scholar 

  16. S. Miklavic and M. Milanic, “Equistable Graphs, General Partition Graphs, Triangle Graphs, and Graph Products,” Discrete Appl. Math. 159 (11), 1148–1159 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu. L. Orlovich, J. Blaewicz, A. Dolgui, G. Finke, and V. S. Gordon, “On the Complexity of the Independent Set Problem in Triangle Graphs,” DiscreteMath. 311 (16), 1670–1680 (2011).

    MathSciNet  MATH  Google Scholar 

  18. Yu. L. Orlovich and I. E. Zverovich, “Independent Domination in Triangle Graphs,” Electron. Notes Discrete Math. 28, 341–348 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Sampathkumar and P. S. Neeralagi, “The Neighbourhood Number of a graph,” Indian J. Pure Appl. Math. 16, 126–132 (1985).

    MathSciNet  MATH  Google Scholar 

  20. E. Sampathkumar and P. S. Neeralagi, “Independent, Perfect and Connected Neighbourhood Numbers of a Graph,” J. Combin. Inform. Syst. Sci. 19 (3–4), 139–145 (1994).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Irzhavskii.

Additional information

Original Russian Text © P.A. Irzhavskii, Yu.A. Kartynnik, Yu.L. Orlovich, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 1, pp. 56–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irzhavskii, P.A., Kartynnik, Y.A. & Orlovich, Y.L. 1-Triangle graphs and perfect neighborhood sets. J. Appl. Ind. Math. 11, 58–69 (2017). https://doi.org/10.1134/S1990478917010070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478917010070

Keywords

Navigation