Abstract
A graph is called a 1-triangle if, for its every maximal independent set I, every edge of this graph with both endvertices not belonging to I is contained exactly in one triangle with a vertex of I. We obtain a characterization of 1-triangle graphs which implies a polynomial time recognition algorithm. Computational complexity is establishedwithin the class of 1-triangle graphs for a range of graph-theoretical parameters related to independence and domination. In particular, NP-completeness is established for the minimum perfect neighborhood set problem in the class of all graphs.
References
C. Bergé, Théorie des graphes et ses applications (Dunod, Paris, 1958; Inostrannaya Literatura, Moscow, 1962).
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).
V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka, Moscow, 1990; B. I. Wissenschaftsverlag, Mannheim, 1994).
Yu. A. Kartynnik and Yu. L. Orlovich, “Domination Triangle Graphs and Upper Bound Graphs,” Dokl. Nats. Akad. Nauk Belarusi 58 (1), 16–25 (2014).
Yu. L. Orlovich, V. S. Gordon, J. Blazewicz, I. E. Zverovich, and G. Finke, “Independent Dominating and Neighborhood Sets in Triangular Graphs,” Dokl. Nats. Akad. Nauk Belarusi 53 (1), 39–44 (2009).
C. Anbeek, D. DeTemple, K. McAvaney, and J. M. Robertson, “When Are Chordal Graphs Also Partition Graphs?,” Australas. J. Combin. 16, 285–293 (1997).
B. Bollobás and E. J. Cockayne, “Graph-Theoretic Parameters Concerning Domination, Independence, and Irredundance,” J. Graph Theory 3 (3), 241–249 (1979).
E. Boros, V. Gurvich, and M. Milanic, “On Equistable, Split, CIS, and Related Classes of Graphs,” (Cornell Univ. Libr. e-Print Archive, arXiv:1505. 05683, 2015).
G. A. Cheston, E. O. Hare, S. T. Hedetniemi, and R. C. Laskar, “Simplicial Graphs,” Congr. Numerantium 67, 105–113 (1988).
G. A. Cheston and T. S. Jap, “A Survey of the Algorithmic Properties of Simplicial, Upper Bound andMiddle Graphs,” J. Graph Algorithms Appl. 10 (2), 159–190 (2006).
D. DeTemple, F. Harary, and J. M. Robertson, “PartitionGraphs,”Soochow J. Math. 13 (2), 121–129 (1987).
D. DeTemple and J. M. Robertson, “Graphs Associated with Triangulations of Lattice Polygons,” J. Austral. Math. Soc. Ser. A 47 (3), 391–398 (1989).
V. Guruswami, C. P. Rangan, M. S. Chang, G. J. Chang, and C. K. Wong, “The Vertex-Disjoint Triangles Problem,” in Graph-Theoretic Concepts in Computer Science (Proceedings of 24th International Workshop, Smolenice Castle, Slovak Republic, June 18–20, 1998) (Springer, Heidelberg, 1998), pp. 26–37.
T. Kloks, C.-M. Lee, J. Liu, and H. Müller, “On the Recognition of General Partition Graphs,” in Graph-Theoretic Concepts in Computer Science (Proceedings of 29th International Workshop, Elspeet, The Netherlands, June 19–21, 2003) (Springer, Heidelberg, 2003), pp. 273–283.
K. McAvaney, J. M. Robertson, and D. DeTemple, “A Characterization and Hereditary Properties for Partition Graphs,” DiscreteMath. 113 (1), 131–142 (1993).
S. Miklavic and M. Milanic, “Equistable Graphs, General Partition Graphs, Triangle Graphs, and Graph Products,” Discrete Appl. Math. 159 (11), 1148–1159 (2011).
Yu. L. Orlovich, J. Blaewicz, A. Dolgui, G. Finke, and V. S. Gordon, “On the Complexity of the Independent Set Problem in Triangle Graphs,” DiscreteMath. 311 (16), 1670–1680 (2011).
Yu. L. Orlovich and I. E. Zverovich, “Independent Domination in Triangle Graphs,” Electron. Notes Discrete Math. 28, 341–348 (2007).
E. Sampathkumar and P. S. Neeralagi, “The Neighbourhood Number of a graph,” Indian J. Pure Appl. Math. 16, 126–132 (1985).
E. Sampathkumar and P. S. Neeralagi, “Independent, Perfect and Connected Neighbourhood Numbers of a Graph,” J. Combin. Inform. Syst. Sci. 19 (3–4), 139–145 (1994).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © P.A. Irzhavskii, Yu.A. Kartynnik, Yu.L. Orlovich, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 1, pp. 56–80.
Rights and permissions
About this article
Cite this article
Irzhavskii, P.A., Kartynnik, Y.A. & Orlovich, Y.L. 1-Triangle graphs and perfect neighborhood sets. J. Appl. Ind. Math. 11, 58–69 (2017). https://doi.org/10.1134/S1990478917010070
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478917010070