Skip to main content
Log in

Abstract

The permanent of a multidimensional matrix is the sum of the products of entries over all diagonals. In this survey, we consider the basic properties of the multidimensional permanent, sufficient conditions for its positivity, available upper bounds, and the specifics of the permanents of polystochasticmatrices.We prove that the number of various combinatorial objects can be expressed via multidimensional permanents. Special attention is paid to the number of 1-factors of uniform hypergraphs and the number of transversals in Latin hypercubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A.-L. Cauchy, “Mèmoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu’elles renferment,” J. Éc. Polytech. 10 (17), 29–112 (1815).

    Google Scholar 

  2. H. Minc, Permanents (Addison-Wesley, Reading, MA, USA, 1978; Mir, Moscow, 1982).

    MATH  Google Scholar 

  3. A. Cayley, “On the Theory of Determinants,” Trans. Cambridge Philos. Soc. 8, 75–88 (1849).

    Google Scholar 

  4. T. Muir, A Treatise on the Theory of Determinants (Macmillan Co., London, 1933).

    Google Scholar 

  5. N. P. Sokolov, SpaceMatrices and Their Applications (Fizmatlit, Moscow, 1960) [in Russian].

    Google Scholar 

  6. N. P. Sokolov, Introduction to the Theory of Multidimensional Matrices (Naukova Dumka, Kiev, 1972) [in Russian].

    Google Scholar 

  7. S. J. Dow and P. M. Gibson, “An Upper Bound for the Permanent of a 3-Dimensional (0, 1)-Matrix,” Proc. Amer. Math. Soc. 99 (1), 29–34 (1987).

    MathSciNet  MATH  Google Scholar 

  8. S. J. Dow and P. M. Gibson, “Permanents of d-Dimensional Matrices,” Linear Algebra Appl. 90, 133–145 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. A. Taranenko, “Multidimensional Permanents and an Upper Bound on the Number of Transversals in Latin Squares,” J. Combin. Des. 23, 305–320 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Linial and Z. Luria, “An Upper Bound on the Number of High-Dimensional Permutations,” Combinatorica 34 (4), 471–486 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. C. Tichy, “Sampling of Partially Distinguishable Bosons and the Relation to the Multidimensional Permanent,” Phys. Rev. A 91 (2), 022316, 1–13 (2015).

    Article  Google Scholar 

  12. D. Cifuentes and P. A. Parrilo, “An Efficient Tree Decomposition Method for Permanents and Mixed Discriminants, Linear Algebra Appl. 493, 45–81 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Aharoni, A. Georgakopoulos, and P. Sprüssel, “Perfect Matchings in r-Partite r-Graphs,” European J. Combin. 30, 39–42 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Barvinok and A. Samorodnitsky, “Computing the Partition Function for Perfect Matchings in a Hypergraph,” Combin. Probab. Comput. 20 (6), 815–835 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Alon and S. Friedland, “The Maximum Number of Perfect Matchings in Graphs with a Given Degree Sequence,” Electron. J. Combin. 15 (N13), 1–2 (2008).

    MathSciNet  MATH  Google Scholar 

  16. P. M. Gibson, “Combinatorial Matrix Functions and 1-Factors of Graphs,” SIAM J. Appl. Math. 19, 330–333 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Taranenko, “Upper Bounds on the Numbers of 1-Factors and 1-Factorizations of Hypergraphs,” Cornell Univ. Libr. e-Print Archive, arXiv:1503.08270 (2015).

    Google Scholar 

  18. L. M. Bregman, “Some Properties of Nonnegative Matrices and Their Permanents,” Dokl. Akad. Nauk SSSR 211 (1), 27–30 (1973) [SovietMath. Dokl. 14 (1), 945–949 (1973)].

    MathSciNet  MATH  Google Scholar 

  19. J. Cutler and A. J. Radcliffe, “An Entropy Proof of the Kahn–Lova` sz Theorem,” Electron. J. Combin. 18 (1), P10, 1–9 (2011).

    MathSciNet  MATH  Google Scholar 

  20. N. Linial and Z. Luria, “An Upper Bound on the Number of Steiner Triple Systems,” Random Struct. Algorithms 34 (4), 399–406 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Hell, “On the Number of Birch Partitions,” Discrete Comput. Geom. 40, 586–594 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. V. Avgustinovich, “Multidimensional Permanents in Enumeration Problems,” Diskretn. Anal. Issled. Oper. 15 (5), 3–5 (2008) [J. Appl. Indust. Math. 4 (1), 19–20 (2010)].

    MATH  Google Scholar 

  23. V. N. Potapov, “On the Multidimensional Permanent and q-Ary Designs,” Sibirsk. Elektron. Mat. Izv. 11, 451–456 (2014).

    MATH  Google Scholar 

  24. S. Hell, “On the Number of Colored Birch and Tverberg Partitions,” Electron. J. Combin. 21 (3), P3.23 (2014).

    MathSciNet  MATH  Google Scholar 

  25. W. B. Jurkat and H. J. Ryser, “Extremal Configurations and Decomposition Theorems,” J. Algebra 8, 194–222 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  26. Zs. Baranyai, “On the Factorization of the Complete Uniform Hypergraph,” in Infinite and Finite Sets, Vol. 1, Ed. by A. Hajnal, T. Rado, and V. T. Sós (North-Holland, Amsterdam, 1975), pp. 91–108.

    Google Scholar 

  27. H. Minc, “Upper Bound for Permanents of (0, 1)-Matrices,” Bull. Amer.Math. Soc. 69, 789–791 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Schrijver, “A Short Proof of Minc’s Conjecture,” J. Combin. Theory Ser. A 25 (1), 80–83 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Radhakrishnan, “An Entropy Proof of Bregman’s Theorem,” J. Combin. Theory Ser. A 77 (1), 161–164 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. W. Soules, “Permanental Bounds for Nonnegative Matrices via Decomposition,” Linear Algebra Appl. 394, 73–89 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Schrijver, “Counting 1-Factors in Regular Bipartite Graphs,” J. Combin. Theory Ser. B 72 (1), 122–135 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  32. G. P. Egorychev, “Proof of the Van derWaerden Conjecture for Permanents,” Sibirsk. Mat. Zh. 22 (6), 65–71 (1981) [SiberianMath. J. 22 (6), 854–859 (1981)].

    MathSciNet  MATH  Google Scholar 

  33. D. I. Falikman, “Proof of the Van derWaerden Conjecture Regarding the Permanent of a Doubly Stochastic Matrix,” Mat. Zametki 29 (6), 931–938 (1981) [Math. Notes Acad. Sci. USSR 29 (6), 475–479 (1981)].

    MathSciNet  MATH  Google Scholar 

  34. B. Gyires, “Elementary Proof for Van der Waerden’s Conjecture and Related Theorems,” Comput. Math. Appl. 31 (10), 7–21 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Gyires, “Contribution to Van der Waerden’s Conjecture,” Comput. Math. Appl. 42 (10–11), 1431–1437 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  36. R. B. Bapat, “A Stronger Form of the Egorychev–Falikman Theorem on Permanents,” Linear Algebra Appl. 63, 95–100 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Gurvits, “Van der Waerden/Schrijver–Valiant Like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for All,” Electron. J. Combin. 15 (R66), 1–26 (2008).

    MathSciNet  MATH  Google Scholar 

  38. M. Marcus and M. Newman, “On the Minimum of the Permanent of a Doubly Stochastic Matrix,” Duke Math. J. 26, 61–72 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Laurent and A. Schriver, “On Leonid Gurvits’s Proof for Permanents,” Amer.Math. Monthly 117, 903–911 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  40. G.-S. Cheon and I. M. Wanless, “An Update on Minc’ Survey of Open Problems Involving Permanents,” Linear Algebra Appl. 403, 314–342 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  41. A. A. Taranenko, “Upper Bounds on the Permanent ofMultidimensional (0, 1)-Matrices,” Sibirsk. Elektron. Mat. Izv. 11, 958–965 (2014).

    MATH  Google Scholar 

  42. M. Marcus and H. Minc, “On a Conjecture of B. L. van derWaerden,” Proc. Cambridge Philos. Soc. 63, 305–309 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  43. I. M. Wanless and B. S. Webb, “The Existence of Latin Squares without Orthogonal Mates,” Des. Codes Cryptogr. 40, 131–135 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  44. N. Linial and Z. Luria, “On the Vertices of the d-Dimensional Birkhoff Polytope,” Discrete Comput. Geom. 51, 161–170 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Csima, “Multidimensional Stochastic Matrices and Patterns,” J. Algebra 14, 194–202 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  46. R. A. Brualdi and J. Csima, “Extremal Plane StochasticMatrices of Dimension Three,” Linear Algebra Appl. 11, 105–133 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Donovan, K. Johnson, and I. M. Wanless, “Permanents and Determinants of Latin Squares,” J. Comb. Des. 24 (3), 132–148 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Balasubramanian, “On Transversals in Latin Squares,” Linear Algebra Appl. 131, 125–129 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Glebov and Z. Luria, “On the Maximum Number of Latin Transversals,” J. Combin. Theory Ser. A 141, 136–146 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  50. B. D. McKay, J. C. McLeod, and I. M. Wanless, “The Number of Transversals in a Latin Square,” Des. Codes Cryptogr. 40, 269–284 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  51. H. J. Ryser, “Neuere Probleme der Kombinatorik,” in Vorträge über Kombinatorik (Oberwolfach, Germany, July 24–29, 1967) (Math. Forschungsinst. Oberwolfach, Oberwolfach, 1967), pp. 69–91.

    Google Scholar 

  52. I. M. Wanless, “Transversals in Latin Squares: A Survey,” in Surveys in Combinatorics 2011 (Cambridge Univ. Press, New York, 2011), pp. 403–437.

    Chapter  Google Scholar 

  53. Z.-W. Sun, “An Additive Theorem and Restricted Sumsets,” Math. Res. Lett. 15 (6), 1263–1276 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  54. I. Vardi, Computational Recreations in Mathematics (Addison-Wesley, Redwood City, 1991).

    MATH  Google Scholar 

  55. S. Eberhard, F. Manners, and R. Mrazović, “Additive Triples of Bijections, or the Toroidal Semiqueens Problem,” Cornell Univ. Libr. e-Print Archive, arXiv:1510.05987v3 (2016).

    Google Scholar 

  56. The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org. Accessed Apr. 25, 2016.

  57. D. S. Krotov and V. N. Potapov, “n-Ary Quasigroups of Order 4,” SIAMJ. DiscreteMath. 23 (2), 561–570 (2009).

    MathSciNet  MATH  Google Scholar 

  58. B. D. McKay and I. M. Wanless, “A Census of Small Latin Hypercubes,” SIAMJ. DiscreteMath. 22, 719–736 (2008).

    MathSciNet  MATH  Google Scholar 

  59. A. Lo and K. Markström, “Perfect Matchings in 3-Partite 3-Uniform Hypergraphs,” J. Combin. Theory Ser. A 127, 22–57 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  60. O. Pikhurko, “Perfect Matchings and K 4 3-Tilings in Hypergraphs of Large Codegree,” Graphs Combin. 24 (4), 391–404 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  61. D. E. Daykin and R. Häggkvist, “Degrees Giving Independent Edges in a Hypergraph,” Bull. Aust. Math. Soc. 23 (1), 103–109 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  62. V. Rödl, A. Ruciǹski, and E. Szemerèdi, “Perfect Matchings in Large Uniform Hypergraphs with Large Minimum Collective Degree,” J. Combin. Theory Ser. A 116 (3), 613–636 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Kühn and D. Osthus, “Embedding Large Subgraphs into Dense Graphs,” in London Mathematical Society Lecture Note Series, Vol. 365: Surveys in Combinatorics 2009, Ed. by S. Huczynska, J. D. Mitchell, and C.M. Roney-Dougal (Cambridge Univ. Press, New York, 2009) pp. 137–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Taranenko.

Additional information

Original Russian Text © A.A. Taranenko, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 4, pp. 35–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taranenko, A.A. Permanents of multidimensional matrices: Properties and applications. J. Appl. Ind. Math. 10, 567–604 (2016). https://doi.org/10.1134/S1990478916040141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916040141

Keywords

Navigation