Abstract
The permanent of a multidimensional matrix is the sum of the products of entries over all diagonals. In this survey, we consider the basic properties of the multidimensional permanent, sufficient conditions for its positivity, available upper bounds, and the specifics of the permanents of polystochasticmatrices.We prove that the number of various combinatorial objects can be expressed via multidimensional permanents. Special attention is paid to the number of 1-factors of uniform hypergraphs and the number of transversals in Latin hypercubes.
References
A.-L. Cauchy, “Mèmoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu’elles renferment,” J. Éc. Polytech. 10 (17), 29–112 (1815).
H. Minc, Permanents (Addison-Wesley, Reading, MA, USA, 1978; Mir, Moscow, 1982).
A. Cayley, “On the Theory of Determinants,” Trans. Cambridge Philos. Soc. 8, 75–88 (1849).
T. Muir, A Treatise on the Theory of Determinants (Macmillan Co., London, 1933).
N. P. Sokolov, SpaceMatrices and Their Applications (Fizmatlit, Moscow, 1960) [in Russian].
N. P. Sokolov, Introduction to the Theory of Multidimensional Matrices (Naukova Dumka, Kiev, 1972) [in Russian].
S. J. Dow and P. M. Gibson, “An Upper Bound for the Permanent of a 3-Dimensional (0, 1)-Matrix,” Proc. Amer. Math. Soc. 99 (1), 29–34 (1987).
S. J. Dow and P. M. Gibson, “Permanents of d-Dimensional Matrices,” Linear Algebra Appl. 90, 133–145 (1987).
A. A. Taranenko, “Multidimensional Permanents and an Upper Bound on the Number of Transversals in Latin Squares,” J. Combin. Des. 23, 305–320 (2015).
N. Linial and Z. Luria, “An Upper Bound on the Number of High-Dimensional Permutations,” Combinatorica 34 (4), 471–486 (2014).
M. C. Tichy, “Sampling of Partially Distinguishable Bosons and the Relation to the Multidimensional Permanent,” Phys. Rev. A 91 (2), 022316, 1–13 (2015).
D. Cifuentes and P. A. Parrilo, “An Efficient Tree Decomposition Method for Permanents and Mixed Discriminants, Linear Algebra Appl. 493, 45–81 (2016).
R. Aharoni, A. Georgakopoulos, and P. Sprüssel, “Perfect Matchings in r-Partite r-Graphs,” European J. Combin. 30, 39–42 (2009).
A. Barvinok and A. Samorodnitsky, “Computing the Partition Function for Perfect Matchings in a Hypergraph,” Combin. Probab. Comput. 20 (6), 815–835 (2011).
N. Alon and S. Friedland, “The Maximum Number of Perfect Matchings in Graphs with a Given Degree Sequence,” Electron. J. Combin. 15 (N13), 1–2 (2008).
P. M. Gibson, “Combinatorial Matrix Functions and 1-Factors of Graphs,” SIAM J. Appl. Math. 19, 330–333 (1970).
A. A. Taranenko, “Upper Bounds on the Numbers of 1-Factors and 1-Factorizations of Hypergraphs,” Cornell Univ. Libr. e-Print Archive, arXiv:1503.08270 (2015).
L. M. Bregman, “Some Properties of Nonnegative Matrices and Their Permanents,” Dokl. Akad. Nauk SSSR 211 (1), 27–30 (1973) [SovietMath. Dokl. 14 (1), 945–949 (1973)].
J. Cutler and A. J. Radcliffe, “An Entropy Proof of the Kahn–Lova` sz Theorem,” Electron. J. Combin. 18 (1), P10, 1–9 (2011).
N. Linial and Z. Luria, “An Upper Bound on the Number of Steiner Triple Systems,” Random Struct. Algorithms 34 (4), 399–406 (2013).
S. Hell, “On the Number of Birch Partitions,” Discrete Comput. Geom. 40, 586–594 (2008).
S. V. Avgustinovich, “Multidimensional Permanents in Enumeration Problems,” Diskretn. Anal. Issled. Oper. 15 (5), 3–5 (2008) [J. Appl. Indust. Math. 4 (1), 19–20 (2010)].
V. N. Potapov, “On the Multidimensional Permanent and q-Ary Designs,” Sibirsk. Elektron. Mat. Izv. 11, 451–456 (2014).
S. Hell, “On the Number of Colored Birch and Tverberg Partitions,” Electron. J. Combin. 21 (3), P3.23 (2014).
W. B. Jurkat and H. J. Ryser, “Extremal Configurations and Decomposition Theorems,” J. Algebra 8, 194–222 (1968).
Zs. Baranyai, “On the Factorization of the Complete Uniform Hypergraph,” in Infinite and Finite Sets, Vol. 1, Ed. by A. Hajnal, T. Rado, and V. T. Sós (North-Holland, Amsterdam, 1975), pp. 91–108.
H. Minc, “Upper Bound for Permanents of (0, 1)-Matrices,” Bull. Amer.Math. Soc. 69, 789–791 (1963).
A. Schrijver, “A Short Proof of Minc’s Conjecture,” J. Combin. Theory Ser. A 25 (1), 80–83 (1978).
J. Radhakrishnan, “An Entropy Proof of Bregman’s Theorem,” J. Combin. Theory Ser. A 77 (1), 161–164 (1997).
G. W. Soules, “Permanental Bounds for Nonnegative Matrices via Decomposition,” Linear Algebra Appl. 394, 73–89 (2005).
A. Schrijver, “Counting 1-Factors in Regular Bipartite Graphs,” J. Combin. Theory Ser. B 72 (1), 122–135 (1998).
G. P. Egorychev, “Proof of the Van derWaerden Conjecture for Permanents,” Sibirsk. Mat. Zh. 22 (6), 65–71 (1981) [SiberianMath. J. 22 (6), 854–859 (1981)].
D. I. Falikman, “Proof of the Van derWaerden Conjecture Regarding the Permanent of a Doubly Stochastic Matrix,” Mat. Zametki 29 (6), 931–938 (1981) [Math. Notes Acad. Sci. USSR 29 (6), 475–479 (1981)].
B. Gyires, “Elementary Proof for Van der Waerden’s Conjecture and Related Theorems,” Comput. Math. Appl. 31 (10), 7–21 (1996).
B. Gyires, “Contribution to Van der Waerden’s Conjecture,” Comput. Math. Appl. 42 (10–11), 1431–1437 (2001).
R. B. Bapat, “A Stronger Form of the Egorychev–Falikman Theorem on Permanents,” Linear Algebra Appl. 63, 95–100 (1984).
L. Gurvits, “Van der Waerden/Schrijver–Valiant Like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for All,” Electron. J. Combin. 15 (R66), 1–26 (2008).
M. Marcus and M. Newman, “On the Minimum of the Permanent of a Doubly Stochastic Matrix,” Duke Math. J. 26, 61–72 (1959).
M. Laurent and A. Schriver, “On Leonid Gurvits’s Proof for Permanents,” Amer.Math. Monthly 117, 903–911 (2010).
G.-S. Cheon and I. M. Wanless, “An Update on Minc’ Survey of Open Problems Involving Permanents,” Linear Algebra Appl. 403, 314–342 (2005).
A. A. Taranenko, “Upper Bounds on the Permanent ofMultidimensional (0, 1)-Matrices,” Sibirsk. Elektron. Mat. Izv. 11, 958–965 (2014).
M. Marcus and H. Minc, “On a Conjecture of B. L. van derWaerden,” Proc. Cambridge Philos. Soc. 63, 305–309 (1967).
I. M. Wanless and B. S. Webb, “The Existence of Latin Squares without Orthogonal Mates,” Des. Codes Cryptogr. 40, 131–135 (2006).
N. Linial and Z. Luria, “On the Vertices of the d-Dimensional Birkhoff Polytope,” Discrete Comput. Geom. 51, 161–170 (2014).
J. Csima, “Multidimensional Stochastic Matrices and Patterns,” J. Algebra 14, 194–202 (1970).
R. A. Brualdi and J. Csima, “Extremal Plane StochasticMatrices of Dimension Three,” Linear Algebra Appl. 11, 105–133 (1975).
D. Donovan, K. Johnson, and I. M. Wanless, “Permanents and Determinants of Latin Squares,” J. Comb. Des. 24 (3), 132–148 (2016).
L. Balasubramanian, “On Transversals in Latin Squares,” Linear Algebra Appl. 131, 125–129 (1990).
R. Glebov and Z. Luria, “On the Maximum Number of Latin Transversals,” J. Combin. Theory Ser. A 141, 136–146 (2016).
B. D. McKay, J. C. McLeod, and I. M. Wanless, “The Number of Transversals in a Latin Square,” Des. Codes Cryptogr. 40, 269–284 (2006).
H. J. Ryser, “Neuere Probleme der Kombinatorik,” in Vorträge über Kombinatorik (Oberwolfach, Germany, July 24–29, 1967) (Math. Forschungsinst. Oberwolfach, Oberwolfach, 1967), pp. 69–91.
I. M. Wanless, “Transversals in Latin Squares: A Survey,” in Surveys in Combinatorics 2011 (Cambridge Univ. Press, New York, 2011), pp. 403–437.
Z.-W. Sun, “An Additive Theorem and Restricted Sumsets,” Math. Res. Lett. 15 (6), 1263–1276 (2008).
I. Vardi, Computational Recreations in Mathematics (Addison-Wesley, Redwood City, 1991).
S. Eberhard, F. Manners, and R. Mrazović, “Additive Triples of Bijections, or the Toroidal Semiqueens Problem,” Cornell Univ. Libr. e-Print Archive, arXiv:1510.05987v3 (2016).
The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org. Accessed Apr. 25, 2016.
D. S. Krotov and V. N. Potapov, “n-Ary Quasigroups of Order 4,” SIAMJ. DiscreteMath. 23 (2), 561–570 (2009).
B. D. McKay and I. M. Wanless, “A Census of Small Latin Hypercubes,” SIAMJ. DiscreteMath. 22, 719–736 (2008).
A. Lo and K. Markström, “Perfect Matchings in 3-Partite 3-Uniform Hypergraphs,” J. Combin. Theory Ser. A 127, 22–57 (2014).
O. Pikhurko, “Perfect Matchings and K 4 3-Tilings in Hypergraphs of Large Codegree,” Graphs Combin. 24 (4), 391–404 (2008).
D. E. Daykin and R. Häggkvist, “Degrees Giving Independent Edges in a Hypergraph,” Bull. Aust. Math. Soc. 23 (1), 103–109 (1981).
V. Rödl, A. Ruciǹski, and E. Szemerèdi, “Perfect Matchings in Large Uniform Hypergraphs with Large Minimum Collective Degree,” J. Combin. Theory Ser. A 116 (3), 613–636 (2009).
D. Kühn and D. Osthus, “Embedding Large Subgraphs into Dense Graphs,” in London Mathematical Society Lecture Note Series, Vol. 365: Surveys in Combinatorics 2009, Ed. by S. Huczynska, J. D. Mitchell, and C.M. Roney-Dougal (Cambridge Univ. Press, New York, 2009) pp. 137–167.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.A. Taranenko, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 4, pp. 35–101.
Rights and permissions
About this article
Cite this article
Taranenko, A.A. Permanents of multidimensional matrices: Properties and applications. J. Appl. Ind. Math. 10, 567–604 (2016). https://doi.org/10.1134/S1990478916040141
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478916040141