Skip to main content
Log in

Abstract

We propose a general approach to solving some vector subset problems in a Euclidean space that is based on higher-order Voronoi diagrams. In the case of a fixed space dimension, this approach allows us to find optimal solutions to these problems in polynomial time which is better than the runtime of available algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. Aggarwal, H. Imai, N. Katoh, and S. Suri, “Finding k Points with Minimum Diameter and Related Problems,” J. Algorithms 12 (1), 38–56 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Aurenhammer and R. Klein, “Voronoi Diagrams,” in Handbook of Computational Geometry, Ed. by J.-R. Sack and J. Urrutia (Elsevier, Amsterdam, 2000), pp. 201–290.

    Chapter  Google Scholar 

  3. M. I. Shamos and D. Hoey, “Closest-Point Problems,” in Proceedings of the 16th IEEE Annual Symposium on Foundations of Computer Sciences, Berkeley, USA, Oct. 13–15, 1975 (IEEE, Piscataway, 1975), pp. 151–162.

    Google Scholar 

  4. A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, and A. V. Pyatkin, “The Problem of Finding a Subset of Vectors with theMaximum TotalWeight,” Diskretn. Anal. Issled.Oper. Ser. 2, 14 (1), 32–42 (2007) [J. Appl. Indust. Math. 2 (1), 32–38 (2008)].

    MathSciNet  MATH  Google Scholar 

  5. E. Kh. Gimadi, A. V. Kel’manov, M. A. Kel’manova, and S. A. Khamidullin, “A Posteriori Detection of a Quasiperiodic Fragment with a Given Number of Repetitions in a Numerical Sequence,” Sibirsk. Zh. Industr. Mat. 9 (1), 55–74 (2006) [Pattern Recognit. Image Anal. 18 (1), 30–42 (2008)].

    MathSciNet  MATH  Google Scholar 

  6. E. Kh. Gimadi, A. V. Pyatkin, and I. A. Rykov, “On Polynomial Solvability of Some Problems of a Vector Subset Choice in a Euclidean Space of Fixed Dimension,” Diskretn. Anal. Issled.Oper. 15 (6), 11–19 (2008) [J. Appl. Indust. Math. 4 (1), 48–53 (2010)].

    MATH  Google Scholar 

  7. A. V. Dolgushev, A. V. Kel’manov, and V. V. Shenmaier, “Polynomial-Time Approximation Scheme for a Problem of Partitioning a Finite Set into Two Clusters,” Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk 21 (3), 100–109 (2015).

    MathSciNet  Google Scholar 

  8. A. V. Kel’manov and A. V. Pyatkin, “On a Version of the Problem of Choosing a Vector Subset,” Diskretn. Anal. Issled. Oper. 15 (5), 20–34 (2008) [J. Appl. Indust. Math. 3 (4), 447–455 (2009)].

    MathSciNet  MATH  Google Scholar 

  9. A. V. Kel’manov and A. V. Pyatkin, “NP-Completeness of Some Problems of Choosing a Vector Subset,” Diskretn. Anal. Issled. Oper. 17 (5), 37–45 (2010) [J. Appl. Indust.Math. 5 (3), 352–357 (2011)].

    MATH  Google Scholar 

  10. A. V. Kel’manov and S.M. Romanchenko, “An FPTAS for a Vector Subset Search Problem,” Diskretn.Anal. Issled. Oper. 21 (3), 41–52 (2014) [J. Appl. Indust. Math. 8 (3), 329–336 (2014)].

    MathSciNet  MATH  Google Scholar 

  11. V. V. Shenmaier, “An Approximation Scheme for a Problem of Search for a Vector Subset,” Diskretn. Anal. Issled. Oper. 19 (2), 92–100 (2012) [J. Appl. Indust. Math. 6 (3), 381–386 (2012)].

    MathSciNet  MATH  Google Scholar 

  12. B. Aronov and S. Har-Peled, “On Approximating the Depth and Related Problems,” SIAM J. Comput. 38 (3), 899–921 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. S. Johnson and F. P. Preparata, “The Densest Hemisphere Problem,” Theoret. Comput. Sci. 6 (1), 93–107 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. V. Dolgushev and A. V. Kel’manov, “An Approximation Algorithm for Solving a Problem of Cluster Analysis,” Diskretn. Anal. Issled.Oper. 18 (2), 29–40 (2011) [J. Appl. Indust.Math. 5 (4), 551–558 (2011)].

    MathSciNet  MATH  Google Scholar 

  15. A. E. Baburin and A. V. Pyatkin, “Polynomial Algorithms for Solving the Vector Sum Problem,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (2), 3–10 (2006) [J. Appl. Indust. Math. 1 (3), 268–272 (2007)].

    MathSciNet  MATH  Google Scholar 

  16. H. Edelsbrunner, J. O’Rourke, and R. Seidel, “Constructing Arrangements of Lines and Hyperplanes with Applications,” SIAM J. Comput. 15 (2), 341–363 (1986).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shenmaier.

Additional information

Original Russian Text © V.V. Shenmaier, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 3, pp. 102–115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenmaier, V.V. Solving some vector subset problems by Voronoi diagrams. J. Appl. Ind. Math. 10, 560–566 (2016). https://doi.org/10.1134/S199047891604013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891604013X

Keywords

Navigation