Abstract
We propose a general approach to solving some vector subset problems in a Euclidean space that is based on higher-order Voronoi diagrams. In the case of a fixed space dimension, this approach allows us to find optimal solutions to these problems in polynomial time which is better than the runtime of available algorithms.
References
A. Aggarwal, H. Imai, N. Katoh, and S. Suri, “Finding k Points with Minimum Diameter and Related Problems,” J. Algorithms 12 (1), 38–56 (1991).
F. Aurenhammer and R. Klein, “Voronoi Diagrams,” in Handbook of Computational Geometry, Ed. by J.-R. Sack and J. Urrutia (Elsevier, Amsterdam, 2000), pp. 201–290.
M. I. Shamos and D. Hoey, “Closest-Point Problems,” in Proceedings of the 16th IEEE Annual Symposium on Foundations of Computer Sciences, Berkeley, USA, Oct. 13–15, 1975 (IEEE, Piscataway, 1975), pp. 151–162.
A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, and A. V. Pyatkin, “The Problem of Finding a Subset of Vectors with theMaximum TotalWeight,” Diskretn. Anal. Issled.Oper. Ser. 2, 14 (1), 32–42 (2007) [J. Appl. Indust. Math. 2 (1), 32–38 (2008)].
E. Kh. Gimadi, A. V. Kel’manov, M. A. Kel’manova, and S. A. Khamidullin, “A Posteriori Detection of a Quasiperiodic Fragment with a Given Number of Repetitions in a Numerical Sequence,” Sibirsk. Zh. Industr. Mat. 9 (1), 55–74 (2006) [Pattern Recognit. Image Anal. 18 (1), 30–42 (2008)].
E. Kh. Gimadi, A. V. Pyatkin, and I. A. Rykov, “On Polynomial Solvability of Some Problems of a Vector Subset Choice in a Euclidean Space of Fixed Dimension,” Diskretn. Anal. Issled.Oper. 15 (6), 11–19 (2008) [J. Appl. Indust. Math. 4 (1), 48–53 (2010)].
A. V. Dolgushev, A. V. Kel’manov, and V. V. Shenmaier, “Polynomial-Time Approximation Scheme for a Problem of Partitioning a Finite Set into Two Clusters,” Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk 21 (3), 100–109 (2015).
A. V. Kel’manov and A. V. Pyatkin, “On a Version of the Problem of Choosing a Vector Subset,” Diskretn. Anal. Issled. Oper. 15 (5), 20–34 (2008) [J. Appl. Indust. Math. 3 (4), 447–455 (2009)].
A. V. Kel’manov and A. V. Pyatkin, “NP-Completeness of Some Problems of Choosing a Vector Subset,” Diskretn. Anal. Issled. Oper. 17 (5), 37–45 (2010) [J. Appl. Indust.Math. 5 (3), 352–357 (2011)].
A. V. Kel’manov and S.M. Romanchenko, “An FPTAS for a Vector Subset Search Problem,” Diskretn.Anal. Issled. Oper. 21 (3), 41–52 (2014) [J. Appl. Indust. Math. 8 (3), 329–336 (2014)].
V. V. Shenmaier, “An Approximation Scheme for a Problem of Search for a Vector Subset,” Diskretn. Anal. Issled. Oper. 19 (2), 92–100 (2012) [J. Appl. Indust. Math. 6 (3), 381–386 (2012)].
B. Aronov and S. Har-Peled, “On Approximating the Depth and Related Problems,” SIAM J. Comput. 38 (3), 899–921 (2008).
D. S. Johnson and F. P. Preparata, “The Densest Hemisphere Problem,” Theoret. Comput. Sci. 6 (1), 93–107 (1978).
A. V. Dolgushev and A. V. Kel’manov, “An Approximation Algorithm for Solving a Problem of Cluster Analysis,” Diskretn. Anal. Issled.Oper. 18 (2), 29–40 (2011) [J. Appl. Indust.Math. 5 (4), 551–558 (2011)].
A. E. Baburin and A. V. Pyatkin, “Polynomial Algorithms for Solving the Vector Sum Problem,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (2), 3–10 (2006) [J. Appl. Indust. Math. 1 (3), 268–272 (2007)].
H. Edelsbrunner, J. O’Rourke, and R. Seidel, “Constructing Arrangements of Lines and Hyperplanes with Applications,” SIAM J. Comput. 15 (2), 341–363 (1986).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.V. Shenmaier, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 3, pp. 102–115.
Rights and permissions
About this article
Cite this article
Shenmaier, V.V. Solving some vector subset problems by Voronoi diagrams. J. Appl. Ind. Math. 10, 560–566 (2016). https://doi.org/10.1134/S199047891604013X
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S199047891604013X