Skip to main content
Log in

On minimizing dataset transfer time in an acyclic network with four servers

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under consideration is some optimization problem of data transmission in a hierarchical acyclic network. This problem is a special case of the makespan minimization problem with multiprocessor jobs on dedicated machines.We study computational complexity of the subproblems with a specific set of job types, where the type of a job is a subset of the machines required by the job.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    MATH  Google Scholar 

  2. B. Chen, C. N. Potts, and G. J. Woeginger, “A Review of Machine Scheduling: Complexity, Algorithms and Approximability,” in Handbook ofCombinatorialOptimization, Vol.3, Ed. by D.-Z. Du and P.M. Pardalos (Kluwer Acad. Publ., Dordrecht, 1998), pp. 21–169.

    Google Scholar 

  3. M. Drozdowski, Scheduling for Parallel Processing (Springer, London, 2009).

    Book  MATH  Google Scholar 

  4. C. W. Duin and E. V. Sluis, “On the Complexity of Adjacent Resource Scheduling,” J. Scheduling 9 (1), 49–62 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bierwirth and F. Meisel, “A Survey of Berth Allocation and Quay Crane Scheduling Problems in Container Terminals,” European J. Oper. Res. 244 (3), 675–689 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Lim, “The Berth Planning Problem,” Oper. Res. Lett. 22 (2–3), 105–110 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. J. Paulus and J. Hurink, “Adjacent-Resource Scheduling. Why Spatial Resources Are so Hard to Incorporate,” Electron. Notes DiscreteMath. 25, 113–116 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. W. Chun, “Scheduling as a Multi-Dimensional Placement Problem,” Engrg. Appl. Artif. Intell. 9 (3), 261–273 (1996).

    Article  Google Scholar 

  9. J. Błażewicz, P. Dell’Olmo, M. Drozdowski, and M.G. Speranza, “Scheduling Multi processor Task on Three Dedicated Processors,” Inform. Process. Lett. 41 (5), 275–280 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. A. Hoogeveen, S. L. van de Velde, and B. Veltman, “Complexity of Scheduling Multiprocessor Task with Prespecified Processor Allocations,” Discrete Appl. Math. 55 (3), 259–272 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Even, M. M. Halldersson, L. Kaplan, and D. Ron, “Scheduling with Conflicts: Online and Offline Algorithms,” J. Scheduling 12 (2), 199–224 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, “Scheduling IndependentMultiprocessorTasks,” Algorithmica 32 (2), 247–261 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup, “OPT versus LOAD in Dynamic Storage Allocation,” SIAM J. Comput. 33 93), 632–646 (2012).

    MathSciNet  MATH  Google Scholar 

  14. V. S. Tanaev, Yu. N. Sotskov, and V. A. Strusevich, Scheduling Theory. Multi-Stage Systems (Nauka, Moscow, 1989; Kluwer Acad. Publ., Dordrecht, 1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kononov.

Additional information

Original Russian Text © A.V. Kononov, P.A. Kononova, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 3, pp. 5–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononov, A.V., Kononova, P.A. On minimizing dataset transfer time in an acyclic network with four servers. J. Appl. Ind. Math. 10, 494–504 (2016). https://doi.org/10.1134/S1990478916040050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916040050

Keywords

Navigation