Skip to main content
Log in

Abstract

Under consideration are the algebras of unary functions with supports in countable primitively recursively closed classes and composition operation. Each algebra of this type is proved to have continuum many maximal subalgebras including the set of all unary functions of the class ε 2 of the Grzegorczyk hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. A. Berezin, “An Algebra of Unate Primitive Recursive Functions with Iteration Operation of General Form,” Kibernet. No. 3, 12–19 (1976) [Cybernetics 12 (3), 346–353 (1976)].

    MathSciNet  Google Scholar 

  2. S. A. Berezin, “Maximal Subalgebras of Recursive Function Algebras,” Kibernet. No. 6, 123–125 (1978) [Cybernetics 14 (6), 935–938 (1978)].

    MathSciNet  MATH  Google Scholar 

  3. G. P. Gavrilov, “On Functional Completeness in a Countable-Valued Logic,” in Problems of Cybernetics, Vol. 15, Ed. by A. A. Lyapunov (Nauka, Moscow, 1965), pp. 5–64.

    Google Scholar 

  4. A. Grzegorczyk, “Some Classes of Recursive Functions,” in Rozprawy Matematyczne (Mathematical Apparatus), Vol. 4 (Pol. Tow. Mat., Warsaw, 1953) [Problems of Mathematical Logic (Mir, Moscow, 1970), pp. 9–49].

    Google Scholar 

  5. V. V. Koz’minykh, “On Primitive Recursive Functions of a Single Argument,” Algebra Logika 7 (1), 75–90 (1968) [Algebra Logic 7 (1), 44–53 (1968)].

    Google Scholar 

  6. S. S. Marchenkov, “A Method for Constructing Maximal Subalgebras of Algebras of General Recursive Functions,” Algebra Logika 17 (5), 581–595 (1978) [Algebra Logic 17 (5), 383–392 (1978)].

    Article  MathSciNet  Google Scholar 

  7. S. S. Marchenkov, “On Cardinality of the Set of Precomplete Classes in SomeClasses of a Countable-Valued Logic,” in Problems of Cybernetics, Ed. by S. V. Yablonskii, Vol. 38 (Nauka, Moscow, 1981), pp. 109–116.

    Google Scholar 

  8. S. S. Marchenkov, Elementary Recursive Functions (MTsNMO, Moscow, 2003) [in Russian].

    Google Scholar 

  9. S. S. Marchenkov, Function Systems with Superposition Operation (Fizmatlit, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  10. V. L. Mikheev, “ Class of Algebras of Primitive Recursive Functions,” Mat. Zametki 14 (1), 143–156 (1973) [Math. Notes Acad. Sci. USSR 14 (1), 638–645 (1981)].

    MathSciNet  Google Scholar 

  11. R. W. Ritchie, “Classes of Predictably Computable Functions,” Trans. Amer. Math. Soc. 106 (1), 139–173 (1963) [Problems of Mathematical Logic (Mir, Moscow, 1970), pp. 50–93].

    Article  MathSciNet  MATH  Google Scholar 

  12. M. G. Rozinas, “An Algebra ofMany-Placed Primitive Recursive Functions,” Uchen. Zapiski Ivanovsk. Gos. Pedagog. Inst. 117, pp. 95–111 (1972).

    Google Scholar 

  13. V. A. Sokolov, “Maximal Subalgebras of the Algebra of All Partially Recursive Functions,” Kibernet. No. 1, 70–73 (1972) [Cybernetics 8 (1), 76–79 (1972)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Marchenkov.

Additional information

Original Russian Text © S.S. Marchenkov, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 3, pp. 81–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenkov, S.S. On maximal subalgebras of the algebras of unary recursive functions. J. Appl. Ind. Math. 10, 380–385 (2016). https://doi.org/10.1134/S199047891603008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891603008X

Keywords

Navigation