Abstract
Under consideration are the algebras of unary functions with supports in countable primitively recursively closed classes and composition operation. Each algebra of this type is proved to have continuum many maximal subalgebras including the set of all unary functions of the class ε 2 of the Grzegorczyk hierarchy.
References
S. A. Berezin, “An Algebra of Unate Primitive Recursive Functions with Iteration Operation of General Form,” Kibernet. No. 3, 12–19 (1976) [Cybernetics 12 (3), 346–353 (1976)].
S. A. Berezin, “Maximal Subalgebras of Recursive Function Algebras,” Kibernet. No. 6, 123–125 (1978) [Cybernetics 14 (6), 935–938 (1978)].
G. P. Gavrilov, “On Functional Completeness in a Countable-Valued Logic,” in Problems of Cybernetics, Vol. 15, Ed. by A. A. Lyapunov (Nauka, Moscow, 1965), pp. 5–64.
A. Grzegorczyk, “Some Classes of Recursive Functions,” in Rozprawy Matematyczne (Mathematical Apparatus), Vol. 4 (Pol. Tow. Mat., Warsaw, 1953) [Problems of Mathematical Logic (Mir, Moscow, 1970), pp. 9–49].
V. V. Koz’minykh, “On Primitive Recursive Functions of a Single Argument,” Algebra Logika 7 (1), 75–90 (1968) [Algebra Logic 7 (1), 44–53 (1968)].
S. S. Marchenkov, “A Method for Constructing Maximal Subalgebras of Algebras of General Recursive Functions,” Algebra Logika 17 (5), 581–595 (1978) [Algebra Logic 17 (5), 383–392 (1978)].
S. S. Marchenkov, “On Cardinality of the Set of Precomplete Classes in SomeClasses of a Countable-Valued Logic,” in Problems of Cybernetics, Ed. by S. V. Yablonskii, Vol. 38 (Nauka, Moscow, 1981), pp. 109–116.
S. S. Marchenkov, Elementary Recursive Functions (MTsNMO, Moscow, 2003) [in Russian].
S. S. Marchenkov, Function Systems with Superposition Operation (Fizmatlit, Moscow, 2004) [in Russian].
V. L. Mikheev, “ Class of Algebras of Primitive Recursive Functions,” Mat. Zametki 14 (1), 143–156 (1973) [Math. Notes Acad. Sci. USSR 14 (1), 638–645 (1981)].
R. W. Ritchie, “Classes of Predictably Computable Functions,” Trans. Amer. Math. Soc. 106 (1), 139–173 (1963) [Problems of Mathematical Logic (Mir, Moscow, 1970), pp. 50–93].
M. G. Rozinas, “An Algebra ofMany-Placed Primitive Recursive Functions,” Uchen. Zapiski Ivanovsk. Gos. Pedagog. Inst. 117, pp. 95–111 (1972).
V. A. Sokolov, “Maximal Subalgebras of the Algebra of All Partially Recursive Functions,” Kibernet. No. 1, 70–73 (1972) [Cybernetics 8 (1), 76–79 (1972)].
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.S. Marchenkov, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 3, pp. 81–92.
Rights and permissions
About this article
Cite this article
Marchenkov, S.S. On maximal subalgebras of the algebras of unary recursive functions. J. Appl. Ind. Math. 10, 380–385 (2016). https://doi.org/10.1134/S199047891603008X
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S199047891603008X