Skip to main content
Log in

Exact pseudopolynomial algorithms for a balanced 2-clustering problem

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider the strongly NP-hard problem of partitioning a set of Euclidean points into two clusters so as to minimize the sum (over both clusters) of the weighted sum of the squared intracluster distances from the elements of the clusters to their centers. The weights of sums are the sizes of the clusters. The center of one cluster is given as input, while the center of the other cluster is unknown and determined as the average value over all points in the cluster (as the geometric center). Two variants of the problems are analyzed in which the cluster sizes are either given or unknown. We present and prove some exact pseudopolynomial algorithms in the case of integer components of the input points and fixed space dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, and A. V. Pyatkin, “The Problem of Finding a Subset of Vectors with theMaximum TotalWeight,” Diskretn. Anal. Issled. Oper. Ser. 2, 14 (1), 32–42 (2007) [J. Appl. Indust. Math. 2 (1), 32–38 (2008)].

    MathSciNet  MATH  Google Scholar 

  2. N. Wirth, Algorithms + Data Structures = Programs (PrenticeHall, Upper Saddle River, USA, 1976;Mir, Moscow, 1985).

    MATH  Google Scholar 

  3. E. Kh. Gimadi, Yu. V. Glazkov, and I. A. Rykov, “On Two Problems of Choosing Some Subset of Vectors with Integer Coordinates That HasMaximum Norm of the Sum ofElements in EuclideanSpace,” Diskretn. Anal. Issled. Oper. 15 (4), 30–43 (2008) [J. Appl. Indust. Math. 3 (3), 343–352 (2009)].

    MATH  Google Scholar 

  4. E. Kh. Gimadi, A. V. Kel’manov, M. A. Kel’manova, and S. A. Khamidullin, “A Posteriori Detecting a Quasiperiodic Fragment with a GivenNumber of Repetitions in aNumerical Sequence,” Sibirsk. Zh. Industr. Mat. 9 (1), 55–74 (2006).

    MathSciNet  MATH  Google Scholar 

  5. A. V. Dolgushev and A. V. Kel’manov, “An Approximation Algorithm for Solving a Problem of Cluster Analysis, Diskretn. Anal. Issled. Oper. 18 (2), 29–40 (2011) [J. Appl. Indust. Math. 5 (4), 551–558 (2011)].

    MathSciNet  MATH  Google Scholar 

  6. A. V. Dolgushev, A. V. Kel’manov, and V. V. Shenmaier, “Polynomial-Time Approximation Scheme for a Problem of Partitioning a Finite Set into Two Clusters,” Trudy Inst. Mat. Mekh. 21 (3), 100–109 (2015).

    MathSciNet  Google Scholar 

  7. A. V. Kel’manov and A. V. Pyatkin, “NP-Hardness of Some Quadratic Euclidean 2-Clustering Problems,” Dokl. Akad. Nauk 464 (5), 535–538 (2015) [Dokl. Math. 92 (2), 634–637 (2015)].

    MathSciNet  MATH  Google Scholar 

  8. A. V. Kel’manov and A. V. Pyatkin, “On the Complexity of Some Quadratic Euclidean 2-Clustering Problems,” Zh. Vychisl. Mat. Mat. Fiz. 56 (3), 150–156 (2016) [Comput. Math. Math. Phys. 56 (3), 491–497 (2016)].

    MATH  Google Scholar 

  9. A. V. Kel’manov and S. M. Romanchenko, “Pseudopolynomial Algorithms for Certain Computationally Hard Vector Subset and Cluster Analysis Problems,” Avtomat. i Telemekh. No. 2, 156–162 (2012) [Autom. Remote Control 73 (2), 349–354 (2012)].

    MathSciNet  MATH  Google Scholar 

  10. A. V. Kel’manov and S. M. Romanchenko, “An FPTAS for a Vector Subset Search Problem,” Diskretn. Anal. Issled. Oper. 21 (3), 41–52 (2014) [J. Appl. Indust. Math. 8 (3), 329–336 (2014)].

    MathSciNet  MATH  Google Scholar 

  11. A. V. Kel’manov and V. I. Khandeev, “A 2-Approximation Polynomial Algorithm for a Clustering Problem,” Diskretn. Anal. Issled. Oper. 20 (4), 36–45 (2013) [J. Appl. Indust. Math. 7 (4), 515–521 (2013)].

    MathSciNet  MATH  Google Scholar 

  12. A. V. Kel’manov and V. I. Khandeev, “A Randomized Algorithm for Two-Cluster Partition of a Set of Vectors,” Zh. Vychisl. Mat. Mat. Fiz. 55 (2), 335–344 (2015) [Comput. Math. Math. Phys. 55 (2), 330–339 (2015)].

    MathSciNet  MATH  Google Scholar 

  13. A. V. Kel’manov and V. I. Khandeev, “An Exact Pseudopolynomial Algorithm for a Problem of the Two-Cluster Partitioning of a Set of Vectors,” Diskretn. Anal. Issled. Oper. 22 (3), 36–48 (2015) [J. Appl. Indust. Math. 9 (4), 497–502 (2015)].

    MathSciNet  MATH  Google Scholar 

  14. D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-Hardness of Euclidean Sum-of-Squares Clustering,” Mach. Learn. 75 (2), 245–248 (2009).

    Article  Google Scholar 

  15. P. Brucker, “On the Complexity of Clustering Problems,” in Optimization and Operations Research: (Proceedings of the Workshop Held at University Bonn, Bonn, Germany, October 2–8, 1977), (Springer, Heidelberg, 1978), pp. 45–54.

    Google Scholar 

  16. W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani, “Polynomial Time Approximation Schemes for Metric Min-Sum Clustering,” in Electronic Colloquium on Computational Complexity, Report No. 25 (Hasso-Plattner-Institut Softwaresystemtechnik, Potsdam, 2002).

    Google Scholar 

  17. W. F. de la Vega and C. Kenyon, “A Randomized Approximation Scheme for Metric Max-Cut,” J. Comput. Syst. Sci. 63, 531–541 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. A. Fisher, Statistical Methods and Scientific Inference (Hafner Press, New York, 1959).

    Google Scholar 

  19. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    Google Scholar 

  20. E. Kh. Gimadi, A. V. Kel’manov, M. A. Kel’manova, and S. A. Khamidullin, “A Posteriori Detecting a Quasiperiodic Fragment in a Numerical Sequence,” Pattern Recognit. Image Anal. 18 (1), 30–42 (2008).

    Article  MATH  Google Scholar 

  21. S. Hasegawa, H. Imai, M. Inaba, N. Katoh, and J. Nakano, “Efficient Algorithms for Variance-Based k-Clustering,” in Computer Graphics and Applications: Proceedings of the 1st Pacific Conference on Computer Graphics and Applications (Seoul, Korea, August 30–September 2, 1993), Vol. 1 (World Scientific, River Edge, NJ, USA, 1993), pp. 75–89.

    Google Scholar 

  22. M. Inaba, N. Katoh, and H. Imai, “Applications of Weighted Voronoi Diagrams and Randomization to Variance-Based k-Clustering,” in Proceedings of the 10th Symposium on Computational Geometry, Stony Brook, NY, USA, June 6–8, 1994 (ACM, New York, 1994), pp. 332–339.

    Google Scholar 

  23. M. R. Rao, “Cluster Analysis and Mathematical Programming,” J. Am. Stat. Assoc. 66, 622–626 (1971).

    Article  MATH  Google Scholar 

  24. S. Sahni and T. Gonzalez “P-Complete Approximation Problems,” J. ACM. 23, 555–566 (1976).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kel’manov.

Additional information

ginal Russian Text © A.V. Kel’manov, A.V. Motkova, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 3, pp. 21–34.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kel’manov, A.V., Motkova, A.V. Exact pseudopolynomial algorithms for a balanced 2-clustering problem. J. Appl. Ind. Math. 10, 349–355 (2016). https://doi.org/10.1134/S1990478916030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916030054

Keywords

Navigation