Skip to main content
Log in

Abstract

A graph clustering problem is under study (also known as the graph approximation problem) with a constraint on cluster sizes. Some new approximation algorithm is presented for this problem, and performance guarantee of the algorithm is obtained. It is shown that the problem belongs to the class APX for every fixed p, where p is the upper bound on the cluster sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. A. Ageev, V. P. Il’ev, A. V. Kononov, and A. S. Talevnin, “Computational Complexity of a Graph Approximation Problem,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (1), 3–11 (2006) [J. Appl. Indust. Math. 1 (1), 1–8 (2007)].

    MathSciNet  MATH  Google Scholar 

  2. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    MATH  Google Scholar 

  3. V. P. Il’ev, S. D. Il’eva, and A. A. Navrotskaya, “Approximation Algorithms for Graph Approximation Problems,” Diskretn. Anal. Issled. Oper. 18 (1), 41–60 (2011) [J. Appl. Indust. Math. 5 (4), 569–581 (2011)].

    MathSciNet  MATH  Google Scholar 

  4. V. P. Il’ev and G. Sh. Fridman, “On the Problem of Approximation by Graphs with a Fixed Number of Components,” Dokl. Akad. Nauk SSSR 264 (3), 533–538 (1982) [Sov. Math. Dokl. 25 (3), 666–670 (1982)].

    MathSciNet  MATH  Google Scholar 

  5. V. P. Il’ev and A. A. Navrotskaya, “Computational Complexity of the Problem of Approximation by Graphs with Connected Components of bounded Size,” Prikl. Diskretn. Mat., No. 3, 80–84 (2011).

    Google Scholar 

  6. V. P. Il’ev and A. A. Navrotskaya, “An Approximate and Exact Solution to a Variant of the Problem of Clustering Interconnected Objects,” in Proceedings of the XI International Asian School-Seminar on Optimization Problems for Complex Systems, Cholpon-Ata, Kyrghyzstan, July 27—August 7, 2015 (Inst. Vychisl. Mat. Mat. Geofiz., Novosibirsk, 2015), pp. 278–283.

    Google Scholar 

  7. A. A. Lyapunov, “On the Structure and Evolution of Control Systems in Connection with the Theory of Classification,” Problems of Cybernetics, Vol. 27 (Fizmatgiz, Moscow, 1973), pp. 7–18.

    Google Scholar 

  8. G. Sh. Fridman, “AGraph Approximation Problem,” in Upravlyaemye Sistemy (Izd. Inst. Mat., Novosibirsk), 8, 73–75 (1971).

    Google Scholar 

  9. G. Sh. Fridman, “Investigation of a Classifying Problem on Graphs,” in Methods of Modelling and Data Processing (Nauka, Novosibirsk, 1976), pp. 147–177.

    Google Scholar 

  10. N. Ailon, M. Charikar, and A. Newman, “Aggregating Inconsistent Information: Ranking and Clustering,” J. ACM 55 (5), 1–27 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Bansal, A. Blum, and S. Chawla, “Correlation Clustering,” Mach. Learn. 56 (1–3), 89–113 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Ben-Dor, R. Shamir, and Z. Yakhimi, “Clustering Gene Expression Patterns,” J. Comput. Biol. 6 (3–4), 281–297 (1999).

    Article  Google Scholar 

  13. M. Charikar, V. Guruswami, and A. Wirth, “Clustering with Qualitative Information,” J. Comput. Syst. Sci. 71 (3), 360–383 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Coleman, J. Saunderson, and A. Wirth, “A local-search 2-approximation for 2-correlation-clustering,” in Lecture Notes in Computer Sciences, Vol. 5193: Algorithms—ESA 2008 (Proceedings of the 16th Annual European Symposium on Algorithms, Karlsruhe, Germany, Sept. 15–17, 2008) (Springer, Heidelberg, 2008), pp. 308–319.

    Google Scholar 

  15. I. Giotis and V. Guruswami, “Correlation Clustering with a Fixed Number of Clusters,” Theory Comput. 2, 249–266 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Křivánek and J. Morávek, “NP-Hard Problems in Hierarchical-Tree Clustering,” Acta Inform. 23, 311–323 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. E. Schaeffer, “Graph Clustering,” Comput. Sci. Rev. 1 (1), 27–64 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Shamir, R. Sharan, and D. Tsur, “ClusterGraph Modification Problems,” Discrete Appl. Math. 144 (1–2), 173–182, (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Tomescu, “Minimal Reduction of a Graph to a Union of Cliques,” DiscreteMath. 10 (1), 173–179 (1974).

    MathSciNet  MATH  Google Scholar 

  20. C. T. Zahn, “Approximating Symmetric Relations by Equivalence Relations,” J. Soc. Ind. Appl. Math. 12 (4), 840–847 (1964).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Il’ev.

Additional information

Original Russian Text © V.P. Il’ev, S.D. Il’eva, A.A. Navrotskaya, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 3, pp. 5–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ev, V.P., Il’eva, S.D. & Navrotskaya, A.A. Graph clustering with a constraint on cluster sizes. J. Appl. Ind. Math. 10, 341–348 (2016). https://doi.org/10.1134/S1990478916030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916030042

Keywords

Navigation