Skip to main content
Log in

Inverse problems of anomalous diffusion theory: An artificial neural network approach

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The results are presented of computer simulation of the operation of a three-layer perceptron trained for solving inverse problems of anomalous diffusion theory. Several types of inverse problems are considered, including the problem of determining the Hurst exponent of a selfsimilar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Nigmatullin, “Fractional Integral and Its Physical Interpretation,” Teoret. Mat. Fiz. 90 (3), 354–368 (1992).

    MathSciNet  MATH  Google Scholar 

  2. F. Mainardi, “The Fundamental Solutions for the Fractional Diffusion-Wave Equation,” Appl. Math. Lett. 9 (6), 23–28 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Metzler and J. Klafter, “The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Phys. Rep. 339, 1–77 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. E. W. Montroll and G. H. Weiss, “RandomWalks on Lattices. II,” J. Math. Phys. 6, 167–178 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Barkai, R. Metzler, and M. Klafter, “From Continuous Time Random Walks to the Fractional Fokker–Plank Equation,” Phys. Rev. E, 61, 132–138 (2000).

    Article  MathSciNet  Google Scholar 

  6. R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi, “Discrete RandomWalk Models for Space-Time Fractional Diffusion,” Chem. Phys. 284, 521–541 (2002).

    Article  MATH  Google Scholar 

  7. R. Gorenflo, A. Vivoli, and F. Mainardi, “Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion,” Nonlinear Dynamics 38, 101–116 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. N. Bondarenko and D. S. Ivaschenko, “Generalized Sommerfeld problem for Time Fractional Diffusion Equation: Analytical and Numerical Approach,” J. Inverse Ill-Posed Probl. 17 (4), 319–333 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. N. Bondarenko and D. S. Ivaschenko, “Numerical Methods for Solving Inverse Problems for Time Fractional Diffusion Equation with Variable Coefficient,” J. Inverse Ill-Posed Probl. 17 (5), 419–440 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Cheng, J. Nakagawa, M. Yamamoto, and T. Yamazaki, “Uniqueness in an Inverse Problem for a One-Dimensional Fractional Diffusion Equation,” Inverse Probl. 25 (11), 115002 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Jin and W. Rundell, “A Tutorial on Inverse Problems for Anomalous Diffusion Processes,” Inverse Probl. 31 (3), 035003 (2015); DOI:10. 1088/0266–5611/31/3/035003.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Rundell, X. Xu, and L. Zuo, “The Determination of an Unknown Boundary Condition in a Fractional Diffusion Equation,” Appl. Anal. 92 (7), 1511–1526 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Tatar and S. Ulusoy, “A Uniqueness Result for an Inverse Problem in a Space-Time Fractional Diffusion Equation,” Electon. J. Differential Equations 2013 (258), 1–9 (2013).

    MathSciNet  MATH  Google Scholar 

  14. M. A. Mahmoud and M. A. Abu Kiefa, “Neural Network Solution of the Inverse Vibration Problem,” NDT and E Internat. 32 (2), 91–99 (1999); DOI:10.1016/S0963–8695(98)00026–7.

    Article  Google Scholar 

  15. E. H. Shiguemori, L. D. Chiwiacowsky, H. F. De Campos Velho, and J. D. S. Da Silva, “An Inverse Vibration Problem Solved by an Artificial Neural Network,” TEMA Tend. Mat. Appl. Comput. 6 (1), 163–175 (2005); DOI:10.5540/tema.2005.06.01.0163.

    MathSciNet  MATH  Google Scholar 

  16. S. V. Barai and P. C. Pandey, “Time-Delay Neural Networks in Damage Detection of Railway Bridges,” Adv. Engrg. Software. 28, 1–10 (1997).

    Article  Google Scholar 

  17. Ph. D. Wasserman, Neural Computing—Theory & Practice (Van Nostrand Reinhold, New York, 1989;Mir, Moscow, 1992).

    Google Scholar 

  18. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover Publ., New York, 1990).

    MATH  Google Scholar 

  19. S. B. Yuste and L. Acedo, “An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations,” SIAM J. Numer. Anal. 42, 1862–1874 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bondarenko.

Additional information

Original Russian Text © A.N. Bondarenko, T.V. Bugueva, V.A, Dedok, 2016, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2016, Vol. XIX, No. 3, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, A.N., Bugueva, T.V. & Dedok, V.A. Inverse problems of anomalous diffusion theory: An artificial neural network approach. J. Appl. Ind. Math. 10, 311–321 (2016). https://doi.org/10.1134/S1990478916030017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916030017

Keywords

Navigation