Abstract
The results are presented of computer simulation of the operation of a three-layer perceptron trained for solving inverse problems of anomalous diffusion theory. Several types of inverse problems are considered, including the problem of determining the Hurst exponent of a selfsimilar medium.
Similar content being viewed by others
References
R. R. Nigmatullin, “Fractional Integral and Its Physical Interpretation,” Teoret. Mat. Fiz. 90 (3), 354–368 (1992).
F. Mainardi, “The Fundamental Solutions for the Fractional Diffusion-Wave Equation,” Appl. Math. Lett. 9 (6), 23–28 (1996).
R. Metzler and J. Klafter, “The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Phys. Rep. 339, 1–77 (2000).
E. W. Montroll and G. H. Weiss, “RandomWalks on Lattices. II,” J. Math. Phys. 6, 167–178 (1965).
E. Barkai, R. Metzler, and M. Klafter, “From Continuous Time Random Walks to the Fractional Fokker–Plank Equation,” Phys. Rev. E, 61, 132–138 (2000).
R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi, “Discrete RandomWalk Models for Space-Time Fractional Diffusion,” Chem. Phys. 284, 521–541 (2002).
R. Gorenflo, A. Vivoli, and F. Mainardi, “Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion,” Nonlinear Dynamics 38, 101–116 (2004).
A. N. Bondarenko and D. S. Ivaschenko, “Generalized Sommerfeld problem for Time Fractional Diffusion Equation: Analytical and Numerical Approach,” J. Inverse Ill-Posed Probl. 17 (4), 319–333 (2009).
A. N. Bondarenko and D. S. Ivaschenko, “Numerical Methods for Solving Inverse Problems for Time Fractional Diffusion Equation with Variable Coefficient,” J. Inverse Ill-Posed Probl. 17 (5), 419–440 (2009).
J. Cheng, J. Nakagawa, M. Yamamoto, and T. Yamazaki, “Uniqueness in an Inverse Problem for a One-Dimensional Fractional Diffusion Equation,” Inverse Probl. 25 (11), 115002 (2009).
B. Jin and W. Rundell, “A Tutorial on Inverse Problems for Anomalous Diffusion Processes,” Inverse Probl. 31 (3), 035003 (2015); DOI:10. 1088/0266–5611/31/3/035003.
W. Rundell, X. Xu, and L. Zuo, “The Determination of an Unknown Boundary Condition in a Fractional Diffusion Equation,” Appl. Anal. 92 (7), 1511–1526 (2013).
S. Tatar and S. Ulusoy, “A Uniqueness Result for an Inverse Problem in a Space-Time Fractional Diffusion Equation,” Electon. J. Differential Equations 2013 (258), 1–9 (2013).
M. A. Mahmoud and M. A. Abu Kiefa, “Neural Network Solution of the Inverse Vibration Problem,” NDT and E Internat. 32 (2), 91–99 (1999); DOI:10.1016/S0963–8695(98)00026–7.
E. H. Shiguemori, L. D. Chiwiacowsky, H. F. De Campos Velho, and J. D. S. Da Silva, “An Inverse Vibration Problem Solved by an Artificial Neural Network,” TEMA Tend. Mat. Appl. Comput. 6 (1), 163–175 (2005); DOI:10.5540/tema.2005.06.01.0163.
S. V. Barai and P. C. Pandey, “Time-Delay Neural Networks in Damage Detection of Railway Bridges,” Adv. Engrg. Software. 28, 1–10 (1997).
Ph. D. Wasserman, Neural Computing—Theory & Practice (Van Nostrand Reinhold, New York, 1989;Mir, Moscow, 1992).
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover Publ., New York, 1990).
S. B. Yuste and L. Acedo, “An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations,” SIAM J. Numer. Anal. 42, 1862–1874 (2005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.N. Bondarenko, T.V. Bugueva, V.A, Dedok, 2016, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2016, Vol. XIX, No. 3, pp. 3–14.
Rights and permissions
About this article
Cite this article
Bondarenko, A.N., Bugueva, T.V. & Dedok, V.A. Inverse problems of anomalous diffusion theory: An artificial neural network approach. J. Appl. Ind. Math. 10, 311–321 (2016). https://doi.org/10.1134/S1990478916030017
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478916030017
