Abstract
We deduce a new formula for the number of labeled connected graphs with given order and number of edges in terms of the block generating function. Applying this formula, we exactly and asymptotically enumerate cacti with given order and cyclomatic number.
References
G. N. Bagaev and E. F. Dmitriev, “The Number of Connected Labeled Bipartite Graphs,” Dokl. Akad. Nauk BSSR 28 (12), 1061–1063 (1984).
V. A. Voblyi, “Wright and Stepanov–Wright Coefficients,” Mat. Zametki 42 (6), 854–862 (1987) [Math. Notes Acad. Sci. USSR 42 (6), 969–974 (1987)].
V. A. Voblyi, “On Enumeration of Labelled Connected Graphs by the Number of Cutpoints,” Diskretn. Mat. 20 (1), 52–63 (2008) [DiscreteMath. Appl. 18 (1), 57–69 (2008)].
V. A. Voblyi, “A Formula for the Number of Labeled Connected Graphs,” Diskretn. Anal. Issled. Oper. 19 (4), 48–59 (2012).
V. A. Voblyi, “Enumeration of Labeled Connected Bicyclic and Tricyclic Graphs Without Bridges,” Mat. Zametki 91 (2), 308–311 (2012) [Math. Notes 91 (1), 293–297 (2012)].
V. A. Voblyi, “Enumeration of Labeled Bicyclic and Tricyclic Eulerian Graphs,” Mat. Zametki 92 (5), 678–683 (2012) [Math. Notes 92 (5–6), 619–623 (2012)].
V. A. Voblyi, “Enumeration of Labeled Eulerian Cacti,” in Proceedings of the XI International Seminar “Discrete Mathematics and Its Applications”, Moscow, Russia, January 18–23, 2012 (Mekh. -Mat. Fak. Moskov. Gos. Univ., Moscow, 2012), pp. 275–277.
V. A. Voblyi, “Enumeration of Labeled Geodetic Planar Graphs,” Mat. Zametki 97 (3), 336–341 (2015) [Math. Notes 97 (3), 321–325 (2015)].
V. A. Voblyi and A. K. Meleshko, Enumeration of Labeled Block-Cactus Graphs, Diskretn. Anal. Issled. Oper. 21 (2), 24–32 (2014) [J. Appl. Indust. Math. 8 (3), 422–427 (2014)].
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration (John Wiley & Sons, New York, 1983; Nauka, Moscow, 1990).
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 3: Elementary Functions (Nauka, Moscow, 1981) [in Russian].
F. Harary, Graph Theory (Addison-Wesley, Reading, MA, USA, 1969; Mir, Moscow, 1973).
F. Harary and E. M. Palmer, Graphical Enumeration (Acad. Press, New York, 1973; Mir, Moscow, 1977).
J. Riordan, Combinatorial Identities (JohnWiley & Sons, New York, 1968; Nauka, Moscow, 1982).
M. Drmota, É Fusy, M. Kang, V. Kraus, and J. Rué, “Asymptotic Study of Subcritical Graph Classes” (Cornell Univ. Libr. e-Print Archive, arXiv:1003. 4699, 2010).
L. Fleisher, “Building Chain and Cactus Representations of AllMinimum Cuts from Hao–Orlin in the Same Asymptotic Run Time,” J. Algorithms 33 (1), 51–72 (1999).
G. W. Ford and G. E. Uhlenbeck, “Combinatorial Problems in the Theory of Graphs. I,” Proc. Natl. Acad. Sci. USA 42 (3), 122–128 (1956).
G. W. Ford and G. E. Uhlenbeck, “Combinatorial Problems in the Theory of Graphs. III,” Proc. Natl. Acad. Sci. USA 42 (8), 529–535 (1956).
P. Leroux, “Enumerative Problems Inspired by Mayer’s Theory of Cluster Integrals,” Electron. J. Comb. 11 (R32), 1–28 (2004).
NIST Handbook of Mathematical Functions, Ed. by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge Univ. Press, New York, 2010).
R. Vicente, D. Saad, and Y. Kabashima, “Error-CorrectingCodeOn a Cactus: A Solvable Model,” Europhys. Lett. 51 (6), 698–704 (2000).
E. M. Wright, “The Number of Connected Sparsely Edged Graphs. III. Asymptotic Results,” J. Graph Theory 4 (4), 393–407 (1980).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.A. Voblyi, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 2, pp. 5–20.
Rights and permissions
About this article
Cite this article
Voblyi, V.A. Enumeration of labeled connected graphs with given order and size. J. Appl. Ind. Math. 10, 302–310 (2016). https://doi.org/10.1134/S1990478916020149
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990478916020149