Skip to main content
Log in

Abstract

We deduce a new formula for the number of labeled connected graphs with given order and number of edges in terms of the block generating function. Applying this formula, we exactly and asymptotically enumerate cacti with given order and cyclomatic number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. N. Bagaev and E. F. Dmitriev, “The Number of Connected Labeled Bipartite Graphs,” Dokl. Akad. Nauk BSSR 28 (12), 1061–1063 (1984).

    MathSciNet  MATH  Google Scholar 

  2. V. A. Voblyi, “Wright and Stepanov–Wright Coefficients,” Mat. Zametki 42 (6), 854–862 (1987) [Math. Notes Acad. Sci. USSR 42 (6), 969–974 (1987)].

    MathSciNet  MATH  Google Scholar 

  3. V. A. Voblyi, “On Enumeration of Labelled Connected Graphs by the Number of Cutpoints,” Diskretn. Mat. 20 (1), 52–63 (2008) [DiscreteMath. Appl. 18 (1), 57–69 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  4. V. A. Voblyi, “A Formula for the Number of Labeled Connected Graphs,” Diskretn. Anal. Issled. Oper. 19 (4), 48–59 (2012).

    MathSciNet  MATH  Google Scholar 

  5. V. A. Voblyi, “Enumeration of Labeled Connected Bicyclic and Tricyclic Graphs Without Bridges,” Mat. Zametki 91 (2), 308–311 (2012) [Math. Notes 91 (1), 293–297 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  6. V. A. Voblyi, “Enumeration of Labeled Bicyclic and Tricyclic Eulerian Graphs,” Mat. Zametki 92 (5), 678–683 (2012) [Math. Notes 92 (5–6), 619–623 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Voblyi, “Enumeration of Labeled Eulerian Cacti,” in Proceedings of the XI International Seminar “Discrete Mathematics and Its Applications”, Moscow, Russia, January 18–23, 2012 (Mekh. -Mat. Fak. Moskov. Gos. Univ., Moscow, 2012), pp. 275–277.

    Google Scholar 

  8. V. A. Voblyi, “Enumeration of Labeled Geodetic Planar Graphs,” Mat. Zametki 97 (3), 336–341 (2015) [Math. Notes 97 (3), 321–325 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  9. V. A. Voblyi and A. K. Meleshko, Enumeration of Labeled Block-Cactus Graphs, Diskretn. Anal. Issled. Oper. 21 (2), 24–32 (2014) [J. Appl. Indust. Math. 8 (3), 422–427 (2014)].

    MathSciNet  MATH  Google Scholar 

  10. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration (John Wiley & Sons, New York, 1983; Nauka, Moscow, 1990).

    MATH  Google Scholar 

  11. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 3: Elementary Functions (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  12. F. Harary, Graph Theory (Addison-Wesley, Reading, MA, USA, 1969; Mir, Moscow, 1973).

  13. F. Harary and E. M. Palmer, Graphical Enumeration (Acad. Press, New York, 1973; Mir, Moscow, 1977).

    MATH  Google Scholar 

  14. J. Riordan, Combinatorial Identities (JohnWiley & Sons, New York, 1968; Nauka, Moscow, 1982).

    MATH  Google Scholar 

  15. M. Drmota, É Fusy, M. Kang, V. Kraus, and J. Rué, “Asymptotic Study of Subcritical Graph Classes” (Cornell Univ. Libr. e-Print Archive, arXiv:1003. 4699, 2010).

    MATH  Google Scholar 

  16. L. Fleisher, “Building Chain and Cactus Representations of AllMinimum Cuts from Hao–Orlin in the Same Asymptotic Run Time,” J. Algorithms 33 (1), 51–72 (1999).

    Article  MathSciNet  Google Scholar 

  17. G. W. Ford and G. E. Uhlenbeck, “Combinatorial Problems in the Theory of Graphs. I,” Proc. Natl. Acad. Sci. USA 42 (3), 122–128 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. W. Ford and G. E. Uhlenbeck, “Combinatorial Problems in the Theory of Graphs. III,” Proc. Natl. Acad. Sci. USA 42 (8), 529–535 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Leroux, “Enumerative Problems Inspired by Mayer’s Theory of Cluster Integrals,” Electron. J. Comb. 11 (R32), 1–28 (2004).

    MathSciNet  MATH  Google Scholar 

  20. NIST Handbook of Mathematical Functions, Ed. by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge Univ. Press, New York, 2010).

  21. R. Vicente, D. Saad, and Y. Kabashima, “Error-CorrectingCodeOn a Cactus: A Solvable Model,” Europhys. Lett. 51 (6), 698–704 (2000).

    Article  Google Scholar 

  22. E. M. Wright, “The Number of Connected Sparsely Edged Graphs. III. Asymptotic Results,” J. Graph Theory 4 (4), 393–407 (1980).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Voblyi.

Additional information

Original Russian Text © V.A. Voblyi, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 2, pp. 5–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voblyi, V.A. Enumeration of labeled connected graphs with given order and size. J. Appl. Ind. Math. 10, 302–310 (2016). https://doi.org/10.1134/S1990478916020149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916020149

Keywords

Navigation