Skip to main content
Log in

On complexity of optimal recombination for flowshop scheduling problems

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under study is the complexity of optimal recombination for various flowshop scheduling problems with the makespan criterion and the criterion of maximum lateness. The problems are proved to be NP-hard, and a solution algorithm is proposed. In the case of a flowshop problem on permutations, the algorithm is shown to have polynomial complexity for “almost all” pairs of parent solutions as the number of jobs tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    Google Scholar 

  2. A. V. Eremeev and Yu. V. Kovalenko, “On Scheduling with Technology Based Machines Grouping,” Diskretn. Anal. Issled. Oper. 18 (5), 54–79 (2011).

    MathSciNet  MATH  Google Scholar 

  3. A. V. Eremeev and Yu. V. Kovalenko, “On Complexity of Optimal Recombination for One Scheduling Problem with Setup Times,” Diskretn. Anal. Issled. Oper. 19 (3), 13–26 (2012).

    MathSciNet  MATH  Google Scholar 

  4. R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling (Addison-Wesley, Reading, MA, USA, 1967; Nauka, Moscow, 1975).

    MATH  Google Scholar 

  5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms (MIT Press, Cambridge, MA, 1990; MTsNMO, Moscow, 2001).

    MATH  Google Scholar 

  6. D. Rutkowska, M. Pilinski, and L. Rutkowski, Neural Networks, Genetic Algorithms, and Fuzzy Systems (Naukowe PWN, Warsaw, 1997; Goryachaya Liniya–Telekom, Moscow, 2006).

    Google Scholar 

  7. A. I. Serdyukov, “On Travelling Salesman Problem with Prohibitions,” in Controlled Systems, Vol. 17 (Inst. Mat., Novosibirsk, 1978), pp. 80–86.

    Google Scholar 

  8. V. S. Tanaev, Yu. N. Sotskov, and V. A. Strusevich, Theory of Scheduling. Multi-Stage Systems (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  9. E. Balas and W. Niehaus, “Optimized Crossover-Based Genetic Algorithms for the Maximum Cardinality and MaximumWeight Clique Problems,” J. Heuristics 4 (2), 107–122 (1998).

    Article  MATH  Google Scholar 

  10. B.-W. Cheng and C.-L. Chang, “A Study on Flowshop Scheduling Problem Combining Taguchi Experimental Design and Genetic Algorithm,” Expert. Systems Appl. 32 (2), 415–421 (2007).

    Article  MathSciNet  Google Scholar 

  11. V. Chvátal, “ProbabilisticMethods in Graph Theory,” Ann. Oper. Res. 1 (3), 171–182 (1984).

    Article  Google Scholar 

  12. W. Cook and P. Seymour, “Tour Merging via Branch-Decomposition,” INFORMSJ. Comput. 15 (3), 233–248 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Cotta, E. Alba, and J. M. Troya, “Utilizing DynasticallyOptimal Forma Recombination in HybridGenetic Algorithms,” in Proceedings of 5th International Conference on Parallel Problem Solving from Nature (Amsterdam, The Netherlands, September 27–30, 1998) (Heidelberg, Springer, 1998), pp. 305–314.

    Google Scholar 

  14. C. Cotta and J. M. Troya, “Genetic Forma Recombination in Permutation Flowshop Problems,” Evol. Comput. 6 (1), 25–44 (1998).

    Article  Google Scholar 

  15. A. V. Eremeev, “On Complexity of Optimal Recombination for Binary Representations of Solutions,” Evol. Comput. 16 (1), 127–147 (2008).

    Article  MathSciNet  Google Scholar 

  16. A. V. Eremeev and Yu. V. Kovalenko, “Optimal Recombination in Genetic Algorithms for Combinatorial Optimization Problems: Part I,” Yugoslav J. Oper. Res. 24 (1), 1–20 (2014).

    Article  MathSciNet  Google Scholar 

  17. A. V. Eremeev and Yu. V. Kovalenko, “Optimal Recombination in Genetic Algorithms for Combinatorial Optimization Problems: Part II,” Yugoslav J. Oper. Res. 24 (2), 165–186 (2014).

    Article  MathSciNet  Google Scholar 

  18. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey,” in Discrete Optimization II (North-Holland, Amsterdam, 1979), pp. 287–326.

    Google Scholar 

  19. J. H. Holland, Adaptation in Natural and Artificial Systems (Univ. Michigan Press, Ann Arbor, 1975).

    Google Scholar 

  20. M. S. Nagano, R. Ruiz, and L. A. N. Lorena, “A Constructive Genetic Algorithm for Permutation Flowshop Scheduling,” Comput. Ind. Eng. 55 (1), 195–207 (2008).

    Article  Google Scholar 

  21. M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems (Prentice Hall, Upper Saddle River, 2002).

    MATH  Google Scholar 

  22. N. J. Radcliffe, “The Algebra of Genetic Algorithms,” Ann. Math. Artif. Intell. 10 (4), 339–384 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Tinós, D. Whitley, and G. Ochoa, “Generalized Asymmetric Partition Crossover (GAPX) for the Asymmetric TSP,” in Proceedings of 2014 Annual Conference on Genetic and Evolutionary Computation (Vancouver, Canada, July 12–16, 2014) (ACM, New York, 2014), pp. 501–508.

    Google Scholar 

  24. M. Yagiura and T. Ibaraki, “The Use of Dynamic Programming in Genetic Algorithms for Permutation Problems,” European. J. Oper. Res. 92 (2), 387–401 (1996).

    Article  MATH  Google Scholar 

  25. L. Wang and L. Zhang, “DeterminingOptimal Combination ofGeneticOperators for Flowshop Scheduling,” Internat. J. Adv. Manuf. Technol. (2006) 30 (3–4), 302–308.

    Article  Google Scholar 

  26. L. Zhang, L. Wang, and D. -Z. Zheng, “An Adaptive GeneticAlgorithmwith MultipleOperators for Flowshop Scheduling,” Internat. J. Adv. Manuf. Technol. 27 (5–6), 580–587 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kovalenko.

Additional information

Original Russian Text © Yu.V. Kovalenko, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 2, pp. 41–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, Y.V. On complexity of optimal recombination for flowshop scheduling problems. J. Appl. Ind. Math. 10, 220–231 (2016). https://doi.org/10.1134/S1990478916020071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916020071

Keywords

Navigation