Skip to main content
Log in

Abstract

We consider locally balanced Gray codes.We say that a Gray code is locally balanced if every “short” subword in its transition sequence contains all letters of the alphabet |1, 2,..., n~. The minimal length of these subwords is the window width of the code. We show that for each n ≥ 3 there exists a Gray code with window width at most n + 3⌊log n⌋.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. O. P. Godovykh, “A Study of Uniform Gray Codes,” in Proceedings of the 50th International Student Scientific Conference “Students and Progress in Science and Technology,” Novosibirsk, Russia, April 13–19, 2012 (Novosib. Gos. Univ., Novosibirsk, 2012), p.133.

    Google Scholar 

  2. A. A. Evdokimov, “On Enumeration of Subsets of a Finite Set,” in Methods of Discrete Analysis for Solving Combinatorial Problems, Vol. 34 (Inst. Mat., Novosibirsk, 1980), pp. 8–26.

    MathSciNet  MATH  Google Scholar 

  3. L. A. Korolenko, “Finding Strongly Uniform Gray Codes,” in Proceedings of the 48th International Student Scientific Conference “Students and Progress in Science and Technology,” Novosibirsk, Russia, April 10–14, 2010 (Novosib. Gos. Univ., Novosibirsk, 2010), p.162.

    Google Scholar 

  4. F. Aguilóand A. Miralles, “On the Frobenius’ Problem of Three Numbers,” in Proceedings of 2005 European Conference on Combinatorics, Graph Theory and Applications, EuroComb 2005, Berlin, Germany, September 5–9, 2005 (DMTCS, Nancy, 2005), p. 317–322.

    Google Scholar 

  5. Yu. Chebiryak and D. Kroening, “Towards a Classification of Hamiltonian Cycles in the 6-Cube,” J. Satisf. BooleanModel. Comput. 4 (1), 57–74 (2008).

    MathSciNet  MATH  Google Scholar 

  6. I. J. Dejter and A. A. Delgado, “Classes of Hamilton Cycles in the 5-Cube,” J. Combin. Math. Combin. Comput. 61, 81–95 (2007).

    MathSciNet  MATH  Google Scholar 

  7. T. Feder and C. Subi, “Nearly Tight Bounds on the Number of Hamiltonian Circuits of the Hypercube and Generalizations,” Inform. Process. Lett. 109 (5), 267–272 2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Goddyn and P. Gvozdjak, “BinaryGray Codes with Long Bit Runs,” Electron. J. Comb. 10 (R27), 1–10 (2003).

    MathSciNet  MATH  Google Scholar 

  9. H. Haanpää and P. R. J. Ö stergård, “Counting Hamiltonian Cycles in Bipartite Graphs,” Math. Comput. 83 (286), 979–995 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Savage, “A Survey of Combinatorial Gray Codes,” SIAM Rev. 39 (4), 605–629 (1997).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Bykov.

Additional information

Original Russian Text © I.S. Bykov, 2016, published in Diskretnyi Analiz i Issledovanie Operatsii, 2016, Vol. 23, No. 1, pp. 51–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, I.S. On locally balanced gray codes. J. Appl. Ind. Math. 10, 78–85 (2016). https://doi.org/10.1134/S1990478916010099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916010099

Keywords

Navigation