Skip to main content
Log in

Estimates of solutions to the linear differential equations of neutral type with several delays of the argument

Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under study is a systemof linear differential equations of neutral type with several delays of the argument. We obtain the conditions on the matrix coefficients of the system under which all solutions decrease with an exponential rate at infinity. Using some functionals of Lyapunov-Krasovskii type, the uniform estimates of solutions are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. N. N. Krasovskii, Some Problems of Stability Theory of Motion (Fizmatgiz, Moscow, 1959; Stanford University Press, Stanford, 1963).

    Google Scholar 

  2. L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments (Nauka, Moscow, 1971; Academic Press, New York, 1973).

    Google Scholar 

  3. J. Hale, Theory of Functional Differential Equations (Springer, New York, 1977; Mir, Moscow, 1984).

    Book  MATH  Google Scholar 

  4. D. G. Korenevskii, Stability of Dynamical Systems under Random Perturbations of Parameters. Algebraic Criteria (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  5. V. L. Kharitonov and D. Hinrichsen, “Exponential Estimates for Time Delay Systems,” Systems Control Lett. 53(5), 395–405 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. L. Kharitonov, S. Mondié, and J. Collado, “Exponential Estimates for Neutral Time-Delay Systems: An LMI Approach,” IEEE Trans. Automat. Control 50(5), 666–670 (2005).

    Article  MathSciNet  Google Scholar 

  7. D. Ya. Khusainov, A. F. Ivanov, and A. T. Kozhametov, “Convergence Estimates for Solutions of Linear Stationary Systems of Differential-Difference Equations with Constant Delay,” Differentsial’nyeUravneniya 41(8), 1137–1140 (2005) [Differential Equations 41 (8), 1196–1200 (2005)].

    MathSciNet  Google Scholar 

  8. G. V. Demidenko and I. I. Matveeva, “Asymptotic Properties of the Solutions to Delay Differential Equations,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 5(3), 20–28 (2005).

    MATH  Google Scholar 

  9. G. V. Demidenko and I. I. Matveeva, “Stability of Solutions to Delay Differential Equations with Periodic Coefficients of Linear Terms,” Sibirsk. Mat. Zh. 48(5), 1025–1040 (2007) [Siberian Math. J. 48 (5), 824–836 (2007)].

    MathSciNet  MATH  Google Scholar 

  10. G. V. Demidenko, “Stability of Solutions to Linear Differential Equations of Neutral Type,” J. Anal. Appl. 7(3), 119–130 (2009).

    MathSciNet  MATH  Google Scholar 

  11. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space (Nauka, Moscow, 1970; American Math. Society, Providence, RI, 1974).

    Google Scholar 

  12. S. K. Godunov, Modern Aspects of Linear Algebra (Nauchn. Kniga, Novosibirsk, 1997; American Math. Society, Providence, RI, 1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Demidenko.

Additional information

Original Russian Text © G.V. Demidenko, E.S. Vodop’yanov, M.A. Skvortsova, 2013, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2013, Vol. XVI, No. 3, pp. 53–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidenko, G.V., Vodop’yanov, E.S. & Skvortsova, M.A. Estimates of solutions to the linear differential equations of neutral type with several delays of the argument. J. Appl. Ind. Math. 7, 472–479 (2013). https://doi.org/10.1134/S1990478913040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478913040030

Keywords

Navigation