Journal of Applied and Industrial Mathematics

, Volume 5, Issue 1, pp 130–143 | Cite as

Edgeworth equilibrium in a model of interregional economic relations

  • V. A. Vasil’evEmail author
  • V. I. Suslov


We introduce an analog of an Edgeworth equilibrium for a class of multiregional economic systems. We analyze the game-theoretic aspects of the coalition stability of regional development plans and establish a quite general existence theorem for an Edgeworth equilibrium. We discuss the questions of coincidence of the set of these equilibria with the fuzzy core and the set of theWalrasian equilibria of the multiregional systemin question.Our methods rest on a systematic accounting for the polyhedrality of the sets of balanced coalition plans.


model of a multiregional system k-subdivision of a model Edgeworth equilibrium fuzzy -core Walrasian equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ch. D. Aliprantis, D. J. Braun, and O. Burkinshaw, Existence and Optimality of Competitive Equilibria (Springer, Berlin, 1989; Mir,Moscow, 1995).zbMATHGoogle Scholar
  2. 2.
    C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, “Edgeworth Equilibria,” Econometrica 55, 1109–1137 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    I. Eckland, Elements of Mathematical Economics (Mir, Moscow, 1983) [in Russian].Google Scholar
  4. 4.
    V. A. Vasil’ev, “On Edgeworth Equilibria for Some Types of Nonclassical Markets,” Siberian Adv. Math. 6, 96–150 (1996).MathSciNetGoogle Scholar
  5. 5.
    A. G. Rubinshtein, Modeling Economic Interactions in Territorial Systems (Nauka, Novosibirsk, 1983) [in Russian].Google Scholar
  6. 6.
    V. I. Suslov, Measuring the Effects of Interregional Interactions: Models, Methods, and Results (Nauka, Novosibirsk, 1991) [in Russian].Google Scholar
  7. 7.
    A. G. Granberg, V. I. Suslov, and S. A. Suspitsyn, Multi-Regional Systems: Mathematical Studies in Economics (Nauka, Novosibirsk, 2007) [in Russian].Google Scholar
  8. 8.
    V. A. Vasil’ev and V. I. Suslov, “On the Unblockable States of Multinational Economic Systems,” Sibirsk. Zh. Indust. Mat. 12(4), 23–34 (2009) [J. Appl. Indust. Math. 4 (4), 578–587 (2010)].MathSciNetGoogle Scholar
  9. 9.
    H. Nikaido, Convex Structures and Economic Theory (Academic Press, New York, 1968; Mir, Moscow, 1972).zbMATHGoogle Scholar
  10. 10.
    A. J. Goldman, “Decomposition and Separability Theorems for PolyhedralConvex Sets,” in Linear Inequalities and Related Questions (Inostrannaya Literatura, Moscow, 1959), pp. 162–171.Google Scholar
  11. 11.
    R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970; Mir, Moscow, 1973).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Institute of Economics and Industrial EngineeringNovosibirskRussia

Personalised recommendations